• Title/Summary/Keyword: Adsorption configurations

Search Result 26, Processing Time 0.022 seconds

A DFT Study on CO2 Interaction with a BN Nano-Cage

  • Baei, Mohammad T.;Peyghan, Ali Ahmadi;Bagheri, Zargham
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3338-3342
    • /
    • 2012
  • Covalent functionalization of a $B_{12}N_{12}$ nano-cage with $CO_2$ molecule has been investigated using density functional theory in terms of energetic, geometric, and electronic property analyses. Results show that besides two physisorption configurations, $CO_2$ preferably tends to perform [2+2] addition on B-N bonds of the cluster which are shared between six-membered and four-membered rings, releasing energy of 14.99 kcal/mol for adsorption of the first $CO_2$ and of 15.45 kcal/mol for the second one (per each molecule). On the basis of calculated density of states, we have found that the electronic properties of the physisorbed $B_{12}N_{12}$ by $CO_2$ have not changed, while slight changes have been predicted in the functionalized cases. Present results might be helpful to provide an effective way to modify the $B_{12}N_{12}$ properties for further purifications and applications.

A Simulational Study of a Simple Fluid Monolayer on a Smooth Solid Surface (연속고체 표면 위의 단순유체 홑층에 대한 시늉연구)

  • Han, Kyu-Kwang
    • The Journal of Natural Sciences
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • A Lennard-Jones fluid layer adsorbed on a smooth solid surface was studied at coverages $\theta$ ~ 0.8 to 1.8 on an isotherm by performing intensive grand canonical Monte Carlo simulations. The results clearly show a picture of two-step melting process which used to be observed in recent thermodynamic measurements of argon monolayer melting on graphite. The observed melting process consist of an abrupt density change followed by a gradual transition. Snapshots of monolayer configurations indicate that the creation and dissociation of a dislocation pair are involved in the melting mechanism. Taking the effect of system size into account, it is suggested that, while the abrupt density change may be not related to the theory of Kosterlitz, Thouless, Halperin, Nelson, and Young (KTHNY), the second gradual transition is probably a KTHNY-type melting transition.

  • PDF

Analysis of Flavor Composition of Coriander Seeds by Headspace Mulberry Paper Bag Micro-Solid Phase Extraction

  • Cha, Eun-Ju;Won, Mi-Mi;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2675-2679
    • /
    • 2009
  • This paper reports the example of headspace mulberry paper bag micro solid phase extraction (HS-MPB-$\mu$-SPE) as a new sampling method for the determination of volatile flavor composition of coriander seeds. Adsorption efficiencies between two configurations of mulberry paper bag were compared, and several parameters affecting the HS-MPB-$\mu$-SPE were investigated and optimized. The optimized technique uses an adsorbent (Tenax TA, 0.1 mg) contained in a mulberry paper bag of front configuration where fine surface was outside, and minimal amount of organic solvent (0.6 mL). Linalool and $\gamma$-terpinene were found as abundant flavor compounds from coriander seeds. The limit of detection (LOD) and the limit of quantitation (LOQ) for linalool of major flavor in coriander seeds were 10.3 ng/mL and 34.4 ng/mL, respectively. The proposed method showed good reproducibility and good recovery. The HS-MPB-$\mu$-SPE is very simple to use, inexpensive, requires small sample amounts and solvent consumption. Because the solvent for extraction is reduced to only a very small volume, there is minimal waste or exposure to toxic organic solvent and no further concentration step.

Operating Optimization and Economic Evaluation of Multicomponent Gas Separation Process using Pressure Swing Adsorption and Membrane Process (압력 순환 흡착과 막 분리공정을 이용한 다성분 기체의 분리공정 조업 최적화 및 경제성 평가)

  • Kim, Hansol;Lee, Jaewook;Lee, Soobin;Han, Jeehoon;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.31-38
    • /
    • 2015
  • At present, carbon dioxide ($CO_2$) emission, which causes global warming, is a major issue all over the world. To reduce $CO_2$ emission directly, commercial deployment of $CO_2$ separation processes has been attempted in industrial plants, such as power plant, oil refinery and steelmaking plant. Besides, several studies have been done on indirect reduction of $CO_2$ emission from recycle of reducing gas (carbon monoxide or hydrogen containing gas) in the plants. Unlike many competing gas separation technologies, pressure swing adsorption (PSA) and membrane filtration are commercially used together or individually to separate a single component from the gas mixture. However, there are few studies on operation of sequential separation process of multi-component gas which has more than two target gas products. In this paper, process simulation model is first developed for two available configurations: $CO_2$ PSA-CO PSA-$H_2$ PSA and $CO_2$ PSA-CO PSA-$H_2$ membrane. Operation optimization and economic evaluation of the processes are also performed. As a result, feed gas contains about 14% of $H_2$ should be used as fuel than separating $H_2$, and $CO_2$ separation should be separated earlier than CO separation when feed gas contains about 30% of $CO_2$ and CO. The simulation results can help us to find an optimal process configuration and operation condition for separation of multicomponent gas with $CO_2$, CO, $H_2$ and other gases.

Photovoltaic Performence of Dye-sensitized Solar Cells using ZnO nanostructures (ZnO 나노구조체를 이용한 염료감응형 태양전지의 광전효율)

  • Lee, JeongGwan;Cheon, JongHun;Kim, NaRee;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.90.1-90.1
    • /
    • 2010
  • Due to the rapidly diminishing energy sources and higher energy production cost, the interest in dye-sensitized solar cells (DSSCs) has been increasing dramatically in recent years. A typical DSSC is constructed of wide band gap semiconductor electrode such as $TiO_2$ or ZnO that are anchored by light-harvesting sensitizer dyes and surrounded by a liquid electrolyte with a iodide ion/triiodide ion redox couple. DSSCs based on one-dimensional nano-structures, such as ZnO nanorods, have been recently attracting increasing attention due to their excellent electrical conductivity, high optical transmittance, diverse and abundant configurations, direct band gap, absence of toxicity, large exiton binding energy, etc. However, solar-to-electrical conversion performances of DSSCs composed of ZnO n-type photo electrode compared with that of $TiO_2$ are not satisfactory. An important reason for the low photovoltaic performance is the dissolution of $Zn^{2+}$ by the adsorption of acidic dye followed by the formation of agglomerates with dye molecules which could block the I-diffusion pathway into the dye molecule on the ZnO surface. In this paper, we prepared the DSSC with the ZnO electrode using the chemical bath deposition (CBD) method under low temperature condition (< $100^{\circ}C$). It was demonstrated that the ZnO seed layers played an important role on the formation of the ZnO nanostructures using CBD. To achieve truly low-temperature growth of the ZnO nanostructures on the substrates, a two-step method was developed and optimized in the present work. Firstly, ZnO seed layer was prepared on the FTO substrate through the spin-coating method. Secondly, the deposited ZnO seed substrate was immersed into an aqueous solution of 0.25M zinc nitrate hexahydrate and 0.25M hexamethylenetetramine at $90^{\circ}C$ for hydrothermal reaction several times.

  • PDF

Mapping the Research Landscape of Wastewater Treatment Wetlands: A Bibliometric Analysis and Comprehensive Review (폐수 처리 위한 습지의 연구 환경 매핑: 서지학적 분석 및 종합 검토)

  • C. C. Vispo;N. J. D. G. Reyes;H. S. Choi;M.S. Jeon;L. H. Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.145-158
    • /
    • 2023
  • Constructed wetlands (CWs) are effective technologies for urban wastewater management, utilizing natural physico-chemical and biological processes to remove pollutants. This study employed a bibliometric analysis approach to investigate the progress and future research trends in the field of CWs. A comprehensive review of 100 most-recently published and open-access articles was performed to analyze the performance of CWs in treating wastewater. Spain, China, Italy, and the United States were among the most productive countries in terms of the number of published papers. The most frequently used keywords in publications include water quality (n=19), phytoremediation (n=13), stormwater (n=11), and phosphorus (n=11), suggesting that the efficiency of CWs in improving water quality and removal of nutrients were widely investigated. Among the different types of CWs reviewed, hybrid CWs exhibited the highest removal efficiencies for BOD (88.67%) and TSS (95.67%), whereas VSSF, and HSSF systems also showed high TSS removal efficiencies (83.25%, and 78.83% respectively). VSSF wetland displayed the highest COD removal efficiency (71.82%). Generally, physical processes (e.g., sedimentation, filtration, adsorption) and biological mechanisms (i.e., biodegradation) contributed to the high removal efficiency of TSS, BOD, and COD in CW systems. The hybrid CW system demonstrated highest TN removal efficiency (60.78%) by integrating multiple treatment processes, including aerobic and anaerobic conditions, various vegetation types, and different media configurations, which enhanced microbial activity and allowed for comprehensive nitrogen compound removal. The FWS system showed the highest TP removal efficiency (54.50%) due to combined process of settling sediment-bound phosphorus and plant uptake. Phragmites, Cyperus, Iris, and Typha were commonly used in CWs due to their superior phytoremediation capabilities. The study emphasized the potential of CWs as sustainable alternatives for wastewater management, particularly in urban areas.