• Title/Summary/Keyword: Adsorption Behavior

Search Result 485, Processing Time 0.029 seconds

Adsorption of Lead Ions from Aqueous Solutions Using Milled Pine Bark (분말 소나무 수피를 이용한 수용액 중의 납 이온 흡착)

  • Oh, Mi-Young;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.389-395
    • /
    • 2006
  • The use of pine bark, a natural adsorbent prepared from Korean Red Pine (Pinus densifloral), was studied for its adsorption behavior of lead ion from aqueous solution. Adsorption experiments were carried out on lead ion concentrations of 10mg/L. Adsorption of lead ion could be described by both Langmuir and Freundlich adsorption isotherms. Treatment of the bark with nitric acid greatly increased initial adsorption rate, and equilibrium sorption capacity increased by approximately 48%. A pseudo second-order kinetic model fitted well for the kinetic behavior of lead ion adsorption onto the bark. Acid-treated bark demonstrated its adsorption capacity quite close to that of granular activated carbon. Results of this study indicated that ion exchange and chelation were involved in the adsorption process.

Adsorption Behavior of Environmental Hormone Bisphenol A onto Mesoporous Silicon Dioxide

  • Fan, Xianghong;Tu, Bing;Ma, Hongmei;Wang, Xuefen
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2560-2564
    • /
    • 2011
  • Mesoporous silicon dioxide (meso-$SiO_2$) was prepared using cetyltrimethylammonium bromide as the structure-directing reagent and tetraethyl orthosicate as the silicon source. The influence of pH value on the adsorption behavior of bisphenol A (BPA) was investigated. The adsorption capacity of BPA onto meso-$SiO_2$ increases slightly with pH value from 2 to 6, and then gradually decreases as further improving pH value. The effect of temperature was also studied, and the adsorption capacity of BPA gradually declines with increasing temperature. The adsorption kinetics and thermodynamics of BPA were examined. It is found that the adsorption of BPA onto meso-$SiO_2$ is in good agreement with Langmuir adsorption model. The rate constant of adsorption is $5.17{\times}10^{-3}g\;mg^{-1}\;min^{-1}$, and the maximum adsorption capacity is as high as 353.4 $mg\;g^{-1}$ at 20 $^{\circ}C$.

Competitive Adsorption of Dispersant and Binder on Alumina and Its Effect on the Electrokinetic Behavior in Aqueous Media

  • Paik, Un-Gyu
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.292-296
    • /
    • 1998
  • In wet powder processing of alumina, a number of organic molecules such as dispersant and binder are used to produce the flow behavior and properties requisite for shape forming. In this study, interparticle forces of alumina particles suspended in aqueous media were controlled by suspension pH, poly (methacrylic acid) (PMAA, used as dispersant) and poly (vinyl alcohol) (PVA, used as binder). The combined adsorption isotherms of the dispersant and binder additives on alumina were determined by total organic carbon analyzer, while the adsorption of dispersant was differentiated from binder in the mixed additive system by ultraviolet spectroscopy. The electrokinetic behavior of alumina suspensions were then correlated with the adsorption characteristics of dispersant and binder onto alumina particles. It was found that the isoelectric ($pH_{iep}$) of alumina shifted from pH 8.9${\pm}$0.1 to acidic pH as PMAA concentration increased, while PVA adsorption did not affect the $pH_{iep}$ but caused a decrease in the near surface potential.

  • PDF

Factors Affecting Protein Adsorption at the Air-Water Interface (계면에서의 단백질 흡착에 끼치는 영향인자)

  • Song, Kyung-Bin
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.521-525
    • /
    • 1993
  • To elucidate adsorption of proteins and examine the molecular behavior of protein molecules at interfaces, various proteins at the air-water interface were studied. The adsorption data of bovine serum albumin intermediates indicated that the conformational state of a protein played an important role in adsorption of proteins at interfaces. The adsorption behavior of succinylated beta-lactoglobulin indicated that the increase in the net negative charge of the protein significantly inflenced both the kinetics and thermodynamics of adsorption. The adsorption kinetics of beta-casein showed that the salt that induced break-down of water structure decreased the rate of adsorption.

  • PDF

Adsorption Analysis of Fluorescent Whitening Agent on Cellulosic Fibers by Zeta Potential Measurement (지료의 제타전위 측정을 통한 형광증백제의 흡착 평가)

  • Lee, Ji Young;Kim, Eun Hea;Kim, Chul Hwan;Park, Jong Hye
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.106-112
    • /
    • 2015
  • Many researchers have proposed analytical methods to measure the adsorption of di-sulpho fluorescent whitening agents (D-FWAs), but practical methods for D-FWA utilization in an actual paper mill have not been established. In particular, the D-FWA adsorption behavior must be monitored in paper mills to ensure the effective use of D-FWAs. This study used the zeta-potential of pulps as an indicator of the adsorption behavior of a D-FWA. We identified the relationship between the actual adsorption of the D-FWA and the zeta-potential of the pulps as a function of D-FWA addition. zeta-potential measurements were then used to analyze the D-FWA adsorption behavior under different conditions of pulp type, conductivity, and pH. The actual adsorption of a D-FWA was proportional to the ${\Delta}zeta-potential$ of the pulps (i.e., the difference between the zeta-potential of a pulp containing no D-FWA and one containing the D-FWA). The ${\Delta}zeta-potential$ of the pulps was therefore adopted for adsorption analysis. A higher adsorption of the D-FWA was observed onto Hw-BKP than onto Sw-BKP because of the shorter fiber length and higher fines content of Hw-BKP. A high conductivity and an acidic pH decreased the D-FWA adsorption because of direct effects of high ion concentrations and low pH on the D-FWA solubility. Therefore, a D-FWA must be added to Hw-BKP under low conductivity conditions and at neutral or alkaline pH to optimize the D-FWA adsorption.

Studies on the Adsorption Modeling of Cationic Heavy Metals(Pb, Cd) by the Surface Complexation Model (Surface Complexation Model을 이용한 양이온 중금속(Pb, Cd) 흡착반응의 모델화 연구)

  • 신용일;박상원
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.211-219
    • /
    • 1999
  • Surface complexation models(SCMs) have been performed to predict metal ion adsorption behavior onto the mineral surface. Application of SCMs, however, requires a self-consistent approach to determine model parameter values. In this paper, in order to determine the metal ion adsorption parameters for the triple layer model(TLM) version of the SCM, we used the zeta potential data for Zeolite and Kaolinite, and the metal ion adsorption data for Pb(II) and Cd(II). Fitting parameters determined for the modeling were as follows ; total site concentration, site density, specific surface area, surface acidity constants, etc. Zeta potential as a new approach other than the acidic-alkalimetric titration method was adopted for simulation of adsorption phenomena. Some fitting parameters were determined by the trial and error method. Modeling approach was successful in quantitatively simulating adsorption behavior under various geochemical conditions.

  • PDF

Adsorption Treatment Characteristics of Cadmium Ion Containing Wastewater Using Waste Tire as an Adsorbent (폐타이어를 흡착제로 한 카드뮴 함유 폐수 처리 특성)

  • Baek, Mi-Hwa;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.498-503
    • /
    • 2006
  • Adsorption features of $Cd^{2+}$ on waste tire particles have been investigated for the purpose of enhanced wastes recycling along with the development of an economic process for wastewater treatment. The isoelectric point of waste tire particles was found to be ca. pH 7 and the adsorbed amount of $Cd^{2+}$ was increased with pH under experimental conditions. The variation of the adsorption behavior of $Cd^{2+}$ with pH was well explained by the change of the electrokinetic potential of waste tire particles according to the pH. Adsorption of $Cd^{2+}$ was observed to reach its equilibrium within 45 minutes after the adsorption started under experimental conditions and followed the Freundlich model well. Kinetic analysis showed that the adsorption reaction of $Cd^{2+}$ was second order and thermodynamic estimation substantiated the endothermic behavior of $Cd^{2+}$ adsorption. As the amount of adsorbent increased, more adsorption of $Cd^{2+}$ was accomplished and the adsorption capacity of adsorbent was found to be enhanced by its pre-treatment with NaOH. Also, the adsorption of adsorbate was promoted as the ionic strength of wastewater was increased.

Adsorption Behavior of Cationic Starches onto Deinked Pulp and Thermomechnical Pulp (탈묵펄프와 열기계펄프에 대한 양성전분 흡착 거동)

  • 허동명;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.2
    • /
    • pp.42-49
    • /
    • 1999
  • Although many researches have been made on the adsorption of cationic starches onto chemical pulp fibers, only limited studies have been reported for deinked pulp(DIP) and thermomechanical pulpI(TMP). In this experiment, the adsorption behavior of the cationic starches onto DIP and TMP fibers investigated. Almost complete adsorption of cationic starches onto the pulp fibers were observed when the addition rate of starch was low. Adsorption ratio decreased abruptly when 3.5% and 4.0% of cationic starches were adsorbed onto deinked pulp and thermomechanical pulp, respectively. Adsorption of cationic starches increased as the degree of substitution decreased and as the pH of the pulp slurry increased. TMP fibers adsorbed more cationic starches than DIP because of its greater charge density, and this led to greater improvement in strength properties for the TMP sheets.

  • PDF

Removal Characteristics of Copper Ion in Wastewater by Employing a Biomass from Liquor Production Process as an Adsorbent (주류 제조과정에서 발생하는 바이오매스를 흡착제로 한 구리 제거 특성)

  • Baek, Mi-Hwa;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.626-631
    • /
    • 2006
  • The adsorption features of copper ion have been investigated by taking the barley residue which occurring from the beer production process as an adsorbent. Under the experimental conditions, adsorption equilibrium of copper ion was attained within 30 minutes after the adsorption started and the adsorption reaction was observed to be first order. As the temperature increased, the adsorbed amount of copper ion at equilibrium was also increased, which indicated that the adsorption reaction was endothermic. Based on the experimental results which obtained by varying the temperatures, several thermodynamic parameters for copper adsorption reaction were estimated. Regarding the electrokinetic behavior of barley residue, its electrokinetic potential was observed to be positive below pH 5 and turned into negative above this pH. In the pH range from 1.5 to 4, copper adsorption was found to be increased, which was well explained by the electrokinetic behavior of barley residue in the pH range. When nitrilotriacetic acid, which is a complexing agent, was coexisted with copper ion, equilibrium adsorption of copper ion was decreased and this was presumed to be due to the formation of metal complex. In addition, the adsorbed amount of copper ion was examined to be increased when $KNO_3$ was coexisted, however, it approached a saturated value above a certain concentration of $KNO_3$.

Adsorption Kinetics for Polymeric Additives in Papermaking Aqueous Fibrous Media by UV Spectroscopic Analysis

  • Yoon, Sung-Hoon;Chai, Xin-Sheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1819-1824
    • /
    • 2006
  • The general objective of the present study was to investigate the potential application of the UV spectroscopic method for determination of the polymeric additives present in papermaking fibrous stock solutions. The study also intended to establish the surface-chemical retention model associated with the adsorption kinetics of additives on fiber surfaces. Polyamide epichlorohydrin (PAE) wet strength resin and imidazolinium quaternary (IZQ) softening agents were selected to evaluate the analytical method. Concentrations of PAE and IZQ in solution were proportional to the UV absorption at 314 and 400 nm, respectively. The time-dependent behavior of polymeric additives obeyed a mono-molecular layer adsorption as characterized in Langmuir-type expression. The kinetic modeling for polymeric adsorption on fiber surfaces was based on a concept that polymeric adsorption on fiber surfaces has two distinguishable stages including initial dynamic adsorption phase and the final near-equilibrium state. The simulation model predicted not only the real-time additive adsorption behavior for polymeric additives at high accuracy once the kinetic parameters were determined, but showed a good agreement with the experimental data. The spectroscopic method examined on the PAE and IZQ adsorption study could potentially be considered as an effective tool for the wet-end retention control as applied to the paper industry.