• 제목/요약/키워드: Adsorbent tube

검색결과 29건 처리시간 0.024초

코크스제조공정에서 탄화시간과 시료채취방법에 따른 다핵방향족탄화수소 발생에 관한 연구 (A Study on Polynuclear Aromatic Hydrocarbons Emitted by Coking Time and Sampling Method in a Coke Oven Plant)

  • 윤충식;백남원
    • 한국산업보건학회지
    • /
    • 제3권1호
    • /
    • pp.37-53
    • /
    • 1993
  • The polynuclear hydrocarbons (PAHs) emitted from coke oven standpipe were sampled using three sampling systems, including glass fiber filter+silver membrane filter, glass fiber filter+silver membrane filter+XAD-2 adsorbent tube, PTFE membrane filter+XAD-2 adsorbent tube, extracted by methylene chloride and analysed by gas chromathography using flame ionization detector. The results of this study were as follows. 1. Because the amounts of coke oven emissions(COE) were large, the analyses of PAHs were simple and possible without evaporation and concentration. Although the generation of COE was high during early stage of coking, the airborne concentration of PAHs was low and increased during late coking. 2. The contents of PAHs in COE were 1.35-2.81%. 3. The index components of PAHs were fluoranthene and pyrene. Their correlation coefficient to total PAHs were 0.96, 0.95, respectively. 4. The particulate PAHs were sampled by filter and gaseous PAHs by adsorbent tube. The collection efficiency of glass fiber filter+silver membrane filter was 20% of total amount sampled by filters+adsorbent and PTFE membrane filter 50%. Adsorbent tube must be attached to the filter to collect light and small PAH components. 5. The generation of acenaphthene and indeno (1,2,3-cd) pyrene were low and concentrations of fluorene and anthracene were $20-40ug/m^3$ throughout coking time. Other PAH eoncentrations were sometimes high. The generation of PAHs was low at 4-6 hours of coking time. The gaseous PAHs were generated earlier than particulate PAHs.

  • PDF

Identification of Volatile Organic Compounds in Several Indoor Public Places in Korea

  • Seo, Sooyun;Lim, Soogil;Lee, Kiyoung;Seo, Young-Kyo;Baek, Sung-Ok
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권4호
    • /
    • pp.192-201
    • /
    • 2014
  • A comprehensive profile of volatile organic compounds (VOCs) in public spaces is needed for interpreting indoor air measurements. Seasonal differences in profiles are critical for epidemiological study and risk assessment. The purposes of this study were to establish profiles for individual VOCs in 50 indoor public places in Korea and to determine seasonal variations in their concentrations. Air samples were taken during working hours. Seventy-two of the 91 targeted VOCs were identified using multiple standards. Six VOCs detected in all summer and winter samples were toluene, acetone, m,p-xylenes, ethylbenzene, benzene, and styrene. In summer, methyl ethyl ketone and 1-butanol were also found in all samples. In both seasons, the dominant indoor VOCs were toluene, m,p-xylenes, ethylbenzene, acetone, and isopropyl alcohol. Other chemicals associated with gasoline emissions were dominant in summer. Limonene was dominant only in winter due to the consumption of tangerines. The nine VOCs with the highest concentrations comprised 64.8% and 49.6% of the TVOC in summer and winter, respectively. Comparing two types of adsorbent tube, a single adsorbent tube with Tenax-TA had similar detection performance as a double adsorbent tube with Tenax and Carbotrap.

FAPO 제올라이트 흡착제 코팅을 통한 핀-관 열교환기 운전조건별 열전달 성능특성 (Heat Transfer Characteristics of Fin-Tube Heat Exchanger Coated with FAPO Zeolite Adsorbent at Different Operating Conditions)

  • 정철기;김용찬;배경진;차동안;권오경
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.93-101
    • /
    • 2017
  • In conventional adsorption chamber, adsorbent is embedded in between heat exchanger fins by wire mesh. This method impedes heat and mass transfer efficiency. So in this study, to improve the heat transfer performance of heat exchanger, a fin-tube exchanger was coated with FAPO (Ferroaluminophosphate) zeolite adsorbent. The fin-tube heat exchanger has a fin pitch of 1.8 mm with a variation of adsorbent coating thickness of about 0.1 mm, 0.15 mm and 0.2 mm. By varying cooling water temperature and chilled water temperature respecively, heat transfer rate and overall heat transfer coefficient were investigated. As a result, the heat transfer rate and overall heat transfer coefficient increase with decreasing cooling water temperature and increasing chilled water temperature. Under the basic conditions, the heat transfer rate of heat exchanger with 0.2 mm coating thickness is 11% and 43% higher than that of 0.1 mm and 0.15 mm, respectively. The overall heat transfer coefficient is $189.1W/m^2{\cdot}^{\circ}C$, it is two times lager than that of 0.1 mm.

Triple-bed Adsorbent Tube를 이용한 가스상 극미량 복합 악취 및 휘발성 유기화합물의 동시 분석 (Simultaneous Analyses for Trace Multi-Odorous and Volatile Organic Compounds in Gas using a Triple-bed Adsorbent Tube)

  • 서용수;이제근
    • Korean Chemical Engineering Research
    • /
    • 제48권2호
    • /
    • pp.244-252
    • /
    • 2010
  • 본 연구에서는 Triple-bed 흡착튜브를 제작하여 열탈착장치와 GC-MS로써 다성분 복합 악취성물질 및 휘발성유기 화합물을 동시분석 가능성을 평가하고자 하였다. Triple-bed 흡착튜브는 하나의 튜브에 Tenax-TA와 소량의 Carbopack B 및 Carbosieve SIII 흡착제를 흡착강도 순으로 3단 배열된 것이다. GC-MS의 분석조건은 mass range 20~350 m/z, 불순물 1 ppm 이하의 헬륨을 운반가스로 하여 저비점 저분자량 물질의 분리동정에 효과적일 수 있도록 하고, 목적이온 추출을 통하여 정량하였다. 그 결과 ppbv 수준의 $C_1{\sim}C_5$의 알콜(4), 알데히드(6), 케톤(2) 그리고 황화합물(2)을 포함한 14종의 물질 모두 99%이상의 회수율과 양호한 재현성 및 직진성으로 동시분석이 가능하였다. 비교적 휘발성이 강하고 분자량이 낮은 물질인 메틸알콜, 아세트알데히드는 상대습도 45% 이하, 흡착유속 50 mL/min, 흡착량 2 L 이하에서 높은 회수율로 보다 안정적으로 정량분석이 가능하였다. 또한 목적이온 추출은 물질피크가 겹쳐 나타난 경우에도 다성분 물질을 각각 정량 가능하였다.

실내공기질 공정시험법 중 VOCs 측정방법의 문제점 고찰 및 개선방안에 관한 연구 (Critical Evaluation of and Suggestions for the VOCs Measurement Method Established as the Korean Indoor Air Quality Standard Method)

  • 예진;정동희;백성옥
    • 한국대기환경학회지
    • /
    • 제30권6호
    • /
    • pp.586-599
    • /
    • 2014
  • During the last two decades, indoor air quality and volatile organic compounds (VOCs) have been of concern in Korean society due to their nature of potential health impacts. In order to investigate the pollution levels of VOCss in indoor environments, establishment of a solid test method for monitoring the airborne VOCss is essential. In Korea, a method based on adsorbent sampling and GC analysis coupled with thermal desorption was proclaimed as the Korea Standard Method for Indoor Air Quality Test. This study was carried out to examine some inherent problems of the VOCs measurement method. The VOCs method does not describe in detail preparing the standard samples. The standard samples may be prepared by impregnation of either liquid standard solutions or a mixture of standard gases. In this study, we investigated the optimal temperature condition for transferring the liquid standards onto a standard adsorbent tube. As a result, keeping the impregnation temperature at $250^{\circ}C$ will be recommended in regard of the boiling points of multiple target analytes and the thermal stability of the adsorbent. We also demonstrated some problems associated with handling of a syringe used for transferring the standard solutions onto the adsorbent tubes, and a best way to get rid of the syringe problems was suggested. Finally, a number of field works were conducted to evaluate the performance of adsorbent sampling methods. Comparison of different adsorbent tubes, i.e. tube packed with single sorbent (Tenax) and double sorbents (Tenax with Carbotrap), revealed that 30 to 40% differences between the two groups, implying that sampling efficiency is depending on the volatility and the strength of adsorbents. However, duplicate precisions for VOCs sampling with a same type of adsorbent and at same flow rates appeared to be satisfactory to be all within 20%, which is a quality control guideline. Distributed volume precisions were also found to be within a guideline value, 25%, although the precision was in general inferior to the duplicate precision. The Korea indoor VOCs test method should be more refined and improved in many aspects, particularly procedure and instrumentation for preparing the standard samples and specification of quality control assessment.

흡착포집 및 열탈착/GC 분석에 의한 공기 중 휘발성 유기화합물의 측정방법론 평가 (Evaluation of Methodology for the Measurement of VOCs in the Air by Adsorbent Sampling and Thermal Desorption with GC Analysis)

  • 백성옥;황승만;박상곤;전선주;김병주;허귀석
    • 한국대기환경학회지
    • /
    • 제15권2호
    • /
    • pp.121-138
    • /
    • 1999
  • This study was carried out to evaluate the performance of a sampling and analytical methodology for the measurement of selected volatile organic compounds (VOCs) in the ambient air. VOCs were determined by the adsorbent tube sampling and automatic thermal desorption coupled with GC/FID and GC/MSD analysis. Target analytes were aromatic VOCs, including BTEX, 1,3,5-and 1,2,4,-trimethylbenzenes(TMBs), and naphthalene. The methodology was investigatedwith a wide range of performance criteria such as repeatability, linearity, lower detection limits, collection efficiency, thermal conditioning, breakthrough volume and calibration methods using internal and external standards. standards. Stability of samples collected on adsorbent tubes during storage was also investigated. In addition, the sampling and analytical method developed during this study was applied to real samples duplicately collected in various indoor and outdoor environments. Precisions for the duplicate samples and distributed volume samples appeared to be well comparable with the performance criteria recommended by USEPA TO-17. The audit accuracy was estimated by inter-lab comparison of both duplicate samples and standard materials between the two independent labs. The overall precision and accuracy of the method were estimated to be within 30% for major aromatic VOCs such as BTEX. This study demonstrated that the adsorbent sampling and thermal desorption method can be reliably applied for the measurement of BTEX in ppb levels frequently occurred in common indoor and ambient environments.

  • PDF

ACF 흡착관 개발을 위한 파괴특성에 관한 연구 (A study on breakthrough characteristics of activated carbon fiber by development of sorbent tube)

  • 원정일;김기환
    • 환경위생공학
    • /
    • 제20권1호
    • /
    • pp.40-54
    • /
    • 2005
  • This dissertation aims to develop adsorption tubes for measuring organic solvents in the working environment, by comparing and analyzing breakthrough condition and adsorption capacity with ACF. 1. In breakthrough characteristics, the raising velocity of breakthrough curve is increasing according to assault concentration, but $50\%$ breakthrough time is decreasing. As breakthrough curve of calculated data using this agrees with the one of experimental data both of them can be used on determining sampling time of adsorption tubes. It is predicted by theoretical that $10\%$ breakthrough time is increasing in the case of increasing filled adsorbent amount. 2. $10\%$ breakthrough time is regularly decreasing as much as assault concentration is increasing. As a result, we can predict the life of adsorbent within the range of the low concentration, and adsorption amount that ACF can sample during $10\%$ breakthrough time is increasing as much as assault concentration is increasing.

Determination of Methyl Bromide Used for the Preservation of Cultural Materials from Insects

  • Lee, Gil-Seung;Shin, Ueon-Sang;Shin, Ho-Sang
    • 한국환경보건학회지
    • /
    • 제28권4호
    • /
    • pp.27-30
    • /
    • 2002
  • A thermal desorption-gas chromatography/mass spectrometric method was developed for the determination of methyl bromide in fumes formed during preservation of cultural materials from insects. Methyl bromide in lunes was collected by drawing 10ι of air through the adsorbent tube filled with a solid adsorbent (Chromosorb). The air samples were analyzed by using a special thermal desorption device and GC/MS determination. The recovery of methyl bromide by air sampling was 88% and the detection limit of the assay was 0.1 pptv based upon assayed air of 10ι. The method was applied to the determination of fumed methyl bromide used for the preservation of papers in a library. The mean concentration of methyl bromide determined in a library was 280.2 $\pm$ 25.4 pptv.

유기용제 측정용 흡착관 개발을 위한 AC 및 ACF의 흡착특성 (Desorption characteristics of Activated Carbon and Activated Carbon Fiber by Development of Sorbent Tube for Measurement of Organic Solvent)

  • 원정일;김기환;신창섭
    • 환경위생공학
    • /
    • 제17권3호
    • /
    • pp.99-109
    • /
    • 2002
  • Charcoal $tube/CS_2$ method are more popularly used than any other in the measurement of the working environment for the exposure evaluation of organic solvent, but it is some weak points that the lower accuracy can be obtained on the polar materials and within the range of the low concentration. Thus solvent desorption method has been developed to make accuracy higher and to overcome some weak points. However, because of high price of adsorption tube for thermal desorption and the short of study on its application to the working environment, it is not popularly used in the domestic industrial hygiene fields. This dissertation aims to develop thermal desorption and adsorption tubes for measuring organic solvents in the working environment, by comparing and analyzing breakthrough condition and adsorption capacity with ACF. Specific surface area of ACF used in this study is wider than the one of AC and micropore of ACF related with adsorption has been developed, and adsorption velocity and adsorption amount are very excellent by linking a pore of surface and an inside well into micropore. 1. Result of analysis on physical characteristics of adsorbent, the specific surface area of ACF was 1.3 times higher than that of AC. Distribution ratio of micropore related to adsorption was 94% on ACF and AC. Result of SEM, micropore of the AC is opened to the surface. In contrast, ACF shows that extremely fast adsorption speed. Because of micropore are exposed on the surface and penetrate through each other. 2. Breakthrough characteristics of adsorbents was not different from slop of breakthrough curve. The effluent concentration reaches 10% of initial concentration($C_{out}/C_{in}=0.1$, break point) of ACF was 30~316min longer than that of AC. Therefore, the adsorption capacities of ACF was 1.1~4.6 times higher than that of AC. ACF can be used as a proper adsorbent for measurement of organic solvent.

흡착관과 캐니스터를 이용한 대기 중 휘발성유기화합물 측정방법의 비교 평가 (Comparison of Measurement Methods for Volatile Organic Compounds in Ambient Air Using Adsorbent Tubes and Canisters)

  • 백성옥;서영교;허귀석;전찬곤;이민도;한진석
    • 한국대기환경학회지
    • /
    • 제32권3호
    • /
    • pp.305-319
    • /
    • 2016
  • This study was carried out to evaluate the performance of two sampling methods, i.e., adsorbent tubes and canisters, for the measurement of ambient volatile organic compounds (VOCs). A total of 24 target VOCs were selected from a list of 48 priority hazardous air pollutants (HAPs) in Korea. The two sampling methods were investigated with a wide range of performance criteria such as repeatability, linearity, and lower detection limits. In addition, mean relative errors (MRE) and mean duplicate precisions (MDP) were estimated by inter-lab comparison studies for duplicate field samples. Precisions for the two methods appeared to be well comparable with the performance criteria recommended by USEPA TO-15 and TO-17 for canister and adsorbent methods, respectively. Correlations and variations between the VOCs concentrations determined by the two methods were generally good in most cases. However, MREs and MDPs for individual VOCs appeared to be widely ranged, depending on each VOC. This implies that the two methods have its own advantages and disadvantages in determining a variety of VOCs in ambient air, and neither of which has absolute superiority. Finally, 9 of 24 VOCs were found to be difficult to determine by either methods due to their unstability in a canister, and lack of appropriate standard materials. Thus, it is suggested that development of measurement methods for such unstable VOCs is an urgent task from a viewpoint of HAPs management.