• 제목/요약/키워드: Adrenal glands

검색결과 114건 처리시간 0.027초

흰쥐 적출 부신에서 DMPP 및 McN-A-343의 Catecholamine 분비작용에 관한 연구 (Studies on Secretion of Catecholamines Evoked By DMPP and McN-A-343 in the Rat Adrenal Gland)

  • 임동윤;황두환
    • 대한약리학회지
    • /
    • 제27권1호
    • /
    • pp.53-67
    • /
    • 1991
  • 흰쥐 적출 부신에서 DMPP와 McN-A-343의 카테콜아민(CA) 분비작용의 차이와 특성에 대해서 연구한 결과 다음과 같다. DMPP(100 uM)와 McN-A-343(100 uM)은 부신정맥내로 투여시 유의한 카테콜아민 분비작용을 나타내었다. Mol농도로 비교시 McN-A-343의 CA분비작용은 DMPP의 약 1/5정도였다. DMPP나 McN-A-343의 반복투여시 반응 급강현상은 관찰할 수 없었다. DMPP의 CA분비작용은 chlorisondamine이나 desipramine또는 $Ca^{2+}-free$ Krebs + EGTA 관류등의 전처치로 의의있게 억제되었으나, pirenzepine, ouabain 및 physostigmine등 전처치에 의해서는 영향을 받지 않았다. 그러나 atropine 전처치시 DMPP의 분비작용은 오히려 증강되었다. McN-A-343의 CA분비작용은 atropine, pirenzepine, chloriondamine, physostigmine 및 $Ca^{2+}-free$ medium plus EGTA 관류등의 전처치에 의해서현처히 차단되었으나 desipramine등에 의해서는 영향을 받지 않았다. 그러나 ouabain의 전치치시 McN-A-343의 분비효과는 크게 증강되었다. 이상의 실험결과로 보아 DMPP와 McN-A-343은 횐쥐 적출관류 부신에서 현저한 CA분비작용을 일으키며, 이는 $Ca^{2+}$ 의존성 임을 보였으며, DMPP의 분비작용은 부신의 nicotine 수용체의 흥분을 통해서 나타내며, 또한 McN-A-343의 분비작용은 $M_{1}-muscarine$ 수용체의 흥분에 의하여 유발되는 것을 생각된다. DMPP의 분비활성이 McN-A-343보다 훨씬 강력한 것으로 사료된다.

  • PDF

외상성 부신 손상에 대한 경카테터 동맥 색전술 후 재발성 출혈: 증례 보고 (Recurrent Post-Traumatic Adrenal Bleeding after Transcatheter Arterial Embolization: A Case Report)

  • 김효주;서상현;정현석
    • 대한영상의학회지
    • /
    • 제84권6호
    • /
    • pp.1408-1413
    • /
    • 2023
  • 외상성 부신 손상은 드물게 나타난다고 알려져 있으며, 최근 외상 환자에서 컴퓨터단층촬영 사용 빈도가 증가함에 따라 그 발견 빈도가 증가하고 있다. 그러나 손상의 희귀성, 임상적 표현과 예후의 다양성으로 인하여 부신 외상의 치료에 대한 명확한 지침은 형성되지 않았다. 본 증례 보고에서는 차량 사고로 인하여 재발성 우측 부신 출혈을 경험하였으며 이에 대하여 반복적인 경카테터 동맥 색전술을 이용하여 치료한 73세 남성 환자에 대하여 보고하고자 한다.

Effects of Losartan on Catecholamine Release in the Isolated Rat Adrenal Gland

  • Noh, Hae-Jeong;Kang, Yoon-Sung;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권4호
    • /
    • pp.327-335
    • /
    • 2009
  • The aim of this study was to determine whether losartan, an angiotensin II (Ang II) type 1 ($AT_1$) receptor could influence the CA release from the isolated perfused model of the rat adrenal medulla. Losartan (5${\sim}$50 ${\mu}$M) perfused into an adrenal vein for 90 min produced dose- and time-dependent inhibition of the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM, a direct membrane depolarizer), DMPP (100 ${\mu}$M) and McN-A-343 (100 ${\mu}$M). Losartan failed to affect basal CA output. Furthermore, in adrenal glands loaded with losartan (15 ${\mu}$M) for 90 min, the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}$M, an activator of L-type $Ca^{2+}$ channels), cyclopiazonic acid (10 ${\mu}$M, an inhibitor of cytoplasmic $Ca^{2+}$ -ATPase), veratridine (100 ${\mu}$M, an activator of $Na^+$ channels), and Ang II (100 nM) were markedly inhibited. However, at high concentrations (150${\sim}$300 ${\mu}$M), losartan rather enhanced the CA secretion evoked by ACh. Collectively, these experimental results suggest that losartan at low concentrations inhibits the CA secretion evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization from the rat adrenal medulla, but at high concentration it rather inhibits ACh-evoked CA secretion. It seems that losartan has a dual action, acting as both agonist and antagonist to nicotinic receptors of the rat adrenal medulla, which might be dependent on the concentration. It is also thought that this inhibitory effect of losartan may be mediated by blocking the influx of both $Na^+$ and $Ca^{2+}$ into the rat adrenomedullary chromaffin cells as well as by inhibiting the $Ca^{2+}$ release from the cytoplasmic calcium store, which is thought to be relevant to the $AT_1$ receptor blockade, in addition to its enhancement of the CA release.

Influence of Apamin on Catecholamine Secretion from the Rat Adrenal Medulla

  • Lee, Eun-Sook;Park, Hyeon-Gyoon;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • 제10권3호
    • /
    • pp.142-151
    • /
    • 2002
  • The present study was attempted to investigate the effect of apamin on catecholamine (CA) secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, cyclopiazonic acid and Bay-K-8644 from the isolated perfused rat adrenal gland and to establish the mechanism of its action. The perfusion of apamin (1 nM) into an adrenal vein for 20 min produced greatly potentiation in CA secretion evoked by ACh (5.32 $ imes$ $10^{-3}$ M), high $K^+$, (5.6 $ imes$ $10^{-2}$), DMPP ($10^{-4}$ M for 2 min), McN-A-343 ($10^{-4}$ M for 2 min), cyclopiazonic acid ($10^{-5}$ M for 4 min) and Bay-K-8644 ($10^{-5}$ M for 4 min). However, apamin itself did fail to affect basal catecholamine output. Furthermore, in adrenal glands preloaded with apamin (1 nM) under the presence of glibenclamide ($10^{-6}$ M), an antidiabetic sulfonylurea that has been shown to be a specific blocker of ATP-regulated potassium channels (for 20 min), CA secretion evoked by DMPP and McN-A-343 was not affected. However, the perfusion of high concentration of apamin (100 nM) into an adrenal vein for 20 min rather inhibited significantly CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, cyclopiazonic acid and Bay-K-8644. Taken together, these results suggest that the low concentration of apamin causes greatly the enhancement of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization. These findings suggests that apamin-sensitive SK ($Ca^{2+}$) channels located in rat adrenal medullary chromaffin cells may play an inhibitory role in the release of catecholamines mediated by stimulation of cholinergic nicotinic and muscarinic receptors as well as membrane depolarization. However, it is thought that high concentration of apamin cause the inhibitory responses in catecholamine secretion evoked by stimulation of cholinergic receptors as well as by membrane depolarization from the rat adrenal gland without relevance with the SK channel blockade.

Influence of SKF81297 on Catecholamine Release from the Perfused Rat Adrenal Medulla

  • Choi, Deok-Ho;Cha, Jong-Hee;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권5호
    • /
    • pp.197-206
    • /
    • 2007
  • The aim of the present study was to investigate the effects of 6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine(SKF81297), a selective agonist of dopaminergic $D_1$ receptor, on the secretion of catecholamines(CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused rat adrenal gland, and also to elucidate the mechanism involved. SKF81297($10{\sim}100{\mu}M$) perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition of CA secretory responses evoked by ACh(5.32 mM), high $K^+$(56 mM), DMPP($100{\mu}M$) and McN-A-343($100{\mu}M$). Also, in adrenal glands loaded with SKF81297($30{\mu}M$), the CA secretory responses evoked by Bay-K-8644($10{\mu}M$), an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid($10{\mu}M$), an inhibitor of cytoplasmic $Ca^{2+}$-ATPase were also inhibited. However, in the presence of the dopamine $D_1$ receptor antagonist, (R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-benzazepine-7-ol(SCH23390, $3{\mu}M$), which is a selective antagonist of dopaminergic $D_1$ receptor, the inhibitory responses of SKF81297($30{\mu}M$) on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644, and cyclopiazonic acid were significantly reduced. Collectively, these experimental results suggest that SKF81297 inhibits the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation(both nicotininc and muscarinic receptors) and membrane depolarization. This inhibitory of SKF81297 seems to be mediated by stimulation of dopaminergic $D_1$ receptors located on the rat adrenomedullary chromaffin cells, which are relevant to extra- and intracellular calcium mobilization. Therefore, it is thought that the presence of the dopaminergic $D_1$ receptors may be involved in regulation of CA release in the rat adrenal medulla.

일차성고알도스테론혈증에서의 부신정맥채혈술: 최적의 좌측채혈을 위한 임상화보 (Adrenal Vein Sampling in Primary Aldosteronism: A Pictorial Essay for Optimal Left-Side Sampling)

  • 김기주;김명섭;홍현표;이영래;최연규
    • 대한영상의학회지
    • /
    • 제84권2호
    • /
    • pp.386-397
    • /
    • 2023
  • 일차성고알도스테론혈증은 고혈압의 원인 중 높은 비중을 차지하는 질병이다. 부신정맥채혈술은 일차성고알도스테론혈증의 원인을 감별하여 최종적인 치료방침을 결정하는 데 있어 필수적인 검사이다. 부신정맥채혈술의 성공 여부는 각 부신정맥에서 채혈한 샘플의 혈중 코티솔 농도와 말초혈관에서 채혈한 샘플의 혈중 코티솔 농도의 비를 측정하여 판단한다. 하대정맥으로 바로 연결되는 오른부신정맥에서 시술의 실패율이 더 높게 보고되며 상대적으로 왼부신정맥의 시술 실패율은 낮지만 드물게 보고된다. 본 임상화보에서는 왼부신정맥 부신정맥채혈술의 실패 사례를 소개하고 분석하여 최적의 부신정맥채혈술을 위한 고려사항에 대해 고찰하고자 한다.

The Effects of Caffeine on the Long Bones and Testes in Immature and Young Adult Rats

  • Kwak, Yoojin;Choi, Hyeonhae;Roh, Jaesook
    • Toxicological Research
    • /
    • 제33권2호
    • /
    • pp.157-164
    • /
    • 2017
  • This study was to evaluate the age-dependent effects of caffeine exposure on the long bones and reproductive organs using male rats. A total of 15 immature male rats and 15 young adult male rats were allocated randomly to three groups: a control group and two groups fed caffeine with 120 and 180 mg/kg/day for 4 weeks. Exposure to caffeine at either dose significantly reduced body weight gain; a proportional reduction in muscle and fat mass in immature animals, whereas a selective reduction in fat mass with relatively preserved muscle mass in young adult animals. The long bones of immature rats exposed to caffeine were significantly shorter and lighter than those of control animals along with decreased bone minerals. However, there was no difference in the length or weight of the long bones in young adult rats exposed to caffeine. Exposure to caffeine reduced the size and absolute weight of the testes significantly in immature animals in comparison to control animals, but not in young adult animals exposed to caffeine. In contrast, the adrenal glands were significantly heavier in caffeine-fed young adult rats in comparison to control animals, but not in caffeine-fed immature rats. Our results clearly show that the negative effects of caffeine on the long bones and testes in rats are different according to the age of the rat at the time of exposure, and might therefore be caused by changes to organ sensitivity and metabolic rate at different developmental stages. Although the long bones and testes are more susceptible to caffeine during puberty, caffeine has negative effects on body fat, bone minerals and the adrenal glands when exposure occurs during young adulthood. There is a need, therefore, to educate the public the potential dangers of caffeine consumption during puberty and young adulthood.

Naltrexone Inhibits Catecholamine Secretion Evoked by Nicotinic Receptor Stimulation in the Perfused Rat Adrenal Medulla

  • Yu, Byung-Sik;Min, Seon-Young;Seo, Yoo-Seok;Choi, Cheol-Hee;Lee, Eun-Hwa;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권4호
    • /
    • pp.223-230
    • /
    • 2005
  • The purpose of the present study was to examine the effect of naltrexone, an opioid antagonist, on secretion of catecholamines (CA) evoked by cholinergic nicotinic stimulation and membrane-depolarization from the isolated perfused rat adrenal gland and to establish the mechanism of its action. Naltrexone $(3{\times}10^{-6}M)$ perfused into an adrenal vein for 60 min produced time-dependent inhibition in CA secretory responses evoked by ACh $(5.32{\times}10^{-3}M)$ , high $K^+$ $(5.6{\times}10^{-2}M)$ , DMPP ($10^{-4}$ M) and McN-A-343 $(10^{-4}M)$ . Naltrexone itself did also fail to affect basal CA output. In adrenal glands loaded with naltrexone $(3{\times}10^{-6}M)$ , the CA secretory responses evoked by Bay-K-8644, an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$, were also inhibited. However, in the presence of met-enkephalin $(5{\times}10^{-6}M)$ , a well-known opioid agonist, the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly inhibited. Collectively, these experimental results demonstrate that naltrexone inhibits greatly CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as that by membrane depolarization. It seems that this inhibitory effect of naltrexone does not involve opioid receptors, but might be mediated by blocking both the calcium influx into the rat adrenal medullary chromaffin cells and the uptake of $Ca^{2+}$ into the cytoplasmic calcium store, which are at least partly relevant to the direct interaction with the nicotinic receptor itself.

Influence of Quinidine on Catecholamine Secretion Evoked by Cholinergic Stimulation and Membrane Depolarization from the Perfused Rat Adrenal Gland

  • Lim, Dong-Yoon;Jeon, Yong-Joon;Yang, Won-Ho;Lim, Geon-Han;Kim, Il-Hwan;Lee, Seung-Myeong;Hong, Soon-Pyo
    • Biomolecules & Therapeutics
    • /
    • 제8권1호
    • /
    • pp.13-21
    • /
    • 2000
  • The present study was designed to investigate the effect f quinidine on catecholamine (CA) secretion evoked by ACh, high $K^{+}$, DMPP, McN-A343, cyclopiazonic acid and Bay-K-8644 from the isolated perfused rat adrenal gland and to establish the mechanism of its action. The perfusion of quinidine (15-150 $\mu$M) into an adrenal vein for 60 min produced relatively dose- and time-dependent inhibition in CA secretion evoked by ACh (5.32$\times$10$^{-3}$ M), high $K^{+}$ (5.6$\times$10$^{-2}$ M), DMPP (10$^{-4}$ M for 2 min), McN-A-343 (10$^{-4}$ M for 2 min), cyclopiazonic acid (10$^{-5}$ M for 4 min) and Bay-K-8644 (10$^{-5}$ M for 4 min). Furthermore, in adrenal glands pre-loaded with quinine (5$\times$10$^{-5}$ M), CA secretory responses evoked by veratridine (10$^{-4}$ M) was time-dependently inhibited. Also, in the presence of lidocaine (10$^{-4}$ M), which is also known to be a sodium channel blocker, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclo-piazonic acid were also greatly reduced in similar fashion to that of quinidine-treatment. Taken together, these results suggest that quinidine causes greatly the inhibition of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization, indicating strongly that this effect may be mediated by inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells. Furthermore, these findings indicate strongly that this inhibitory action of quinidine appears to be associated to the blocking action of sodium channels at least in CA secretion from the rat adrenal gland.and.

  • PDF

Inhibitory Effects of Dihydrexidine on Catecholamine Release from the Rat Adrenal Medulla

  • Lee, Jae-Hwang;Lim, Hyo-Jeong;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • 제17권1호
    • /
    • pp.32-42
    • /
    • 2009
  • The purpose of the present study was to examine the effect of dihydrexidine, a full $D_1$ receptor agonist, on the secretion of catecholamines (CA) from the perfused model of the rat adrenal gland, and to establish its mechanism of action. Dihydrexidine (10-100 ${\mu}M$), perfused into an adrenal vein for 60 min, relatively produced dose- and time-dependent inhibition in the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Dihydrexidine itself did fail to affect basal CA output. Also, in adrenal glands loaded with dihydrexidine (30 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$), an activator of L-type $Ca^{2+}$ channels, cyclopiazonic acid (10 ${\mu}M$), an inhibitor of cytoplasmic $Ca^{2+}$-ATPase, and veratridine, an activator of voltage-dependent $Na+$ channels (10 ${\mu}M$), were also markedly inhibited, respectively. However, in the simultaneous presence of dihydrexidine (30 ${\mu}M$) and R (+)-SCH23390 (a selective antagonist of $D_1$ receptor, 3 ${\mu}M$), the CA secretory responses evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644, cyclopiazonic acid and veratridine were considerably recovered to the extent of the corresponding control secretion compared with the inhibitory responses by dihydrexidinetreatment alone. In conclusion, these experimental results suggest that dihydrexidine significantly inhibits the CA secretion evoked by cholinergic stimulation (both nicotinic and muscarinic receptors) and membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of dihydrexidine may be mediated by inhibiting influx of both $Ca^{2+}$ and $Na^+$ into the cytoplasm as well as by suppression of $Ca^{2+}$ release from cytoplasmic calcium store through activation of dopaminergic $D_1$ receptors located on the rat adrenomedullary chromaffin cells.