• Title/Summary/Keyword: Admissible Velocity Field

Search Result 61, Processing Time 0.024 seconds

UBET Analysis of Combined Forging of Non-Axisymmetric Shapes With Inclined Protrusion (경사진 돌출부가 있는 비축대칭 복합단조의 상계요소해석)

  • 윤정호;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 1990
  • The study is concerned with the analysis of combined forging of non-axisymmetric shapes with inclined protrusions by UBET technique. Work hardening is considered for the given range of strain rate during the forging process. A complex shape with inclined cavities is analyzed by subdividing the workpiece into finite UBET elements for which simple velocity fields are applicable. An experimental set-up was designed and manufactured for the experiment, and experiments are carried out with lead billets. The devised set-up can be used for closed-die forging of complex shapes with protrusions in which the dies can be separated automatically for easy removal of the forged products. Based on the derived kinematically admissible velocity fields for corresponding UBET elements, general computer programs have been developed. Since the energy dissipation rate for each elemental region is provided by subprograms (Subroutine or Function), the developed program can be applied to the forging problems of various shapes. The present study has shown that the method developed can be effectively applied to forging of non-axisymmetric shapes with complicated protrusions.

A Study on the Piping Defect at The Final Stage of Axisymmetric Extrusion by Upper Bound Element Technique (상계요소법에 의한 축대칭 압출의 최종공정에서의 파이핑 발생에 관한 연구)

  • Choi, Jae-Chan;Choi, In-Keun
    • Transactions of Materials Processing
    • /
    • v.3 no.1
    • /
    • pp.23-37
    • /
    • 1994
  • The upper bound element technique(UBET) is used to analyze the final stage of the axisymmetric forward extrusion. Kinematically admissible velocity field involving curved surface of velocity discontinuity is assumed. The required power to arise the piping defect is obtained and is compared with Aviture's solution a the same condition. Conditions for inception of the cavity and development of the pipe are predicted. The internal radius of the pipe and critical length of billet are also determined. Experiments are carried out for extrusion with lead specimens to investigate the piping phenomena. The theoretically predicted results showed reasonably good agreement with the experimental observation.

  • PDF

Analysis of the Curving Phenomenon of Curved Circular Shaped Product by the Upper Bound Analysis and the DEFORMTM-3D in Eccentric Extrusion (곡봉(曲奉)의 편심압출가공에 대하여 상계굽힘해석과 DEFORMTM-3D에 의한 굽힘해 석 비교)

  • 김진훈;김한봉;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.45-48
    • /
    • 1997
  • The kinematically admissible velocity field is developed for the eccentric extrusion of circular shaped products. The curving of product in extrusion is caused by the difference of the linearly distributed longitudinal velocity on the cross-section of the workpiece at the dies exit. The results of the eccentric extrusion by upper bound analysis show that the curvature of product increases with the increase in eccentricity of gravity center of the cross-section of workpiece at dies entrance from that of the corss-section at the dies exit end. By the DEFORMTM-3D analysis, the curving of circular shaped product in extrusion is changed by the eccentricity, die land length and the die length. The result of the analysis by DEFORMTM-3D software shows that the curvature of circular shaped product increases with the eccentricity. The two analysis and one experiment show the curving phenomenon in eccentric extrusion process.

  • PDF

Analysis of the Curving Phenomenon of Curved T-Shaped Product by the Upper Bound Analysis and the $ DEFORM^{TM}$-3D in Eccentric Extrusion (굽은 T形 제품의 편심압출가공에 대한 상계굽힘해석과$ DEFORM^{TM}$-3D에 의한 굽힘 해석 비교)

  • 김한봉;김진훈;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.49-52
    • /
    • 1997
  • The kinematically admissible velocity field is developed for the analysis of the curving of an eccentric extrusion. The curving of product in extrusion is caused by the difference of the linearly distributed longitudinal velocity on the cross-section of the workpiece at the dies exit. The result of the analysis show that the curvature of product increases with the increase in eccentricity of gravity center of the cross-section of the workpiece at the die entrance from that of the cross-section at the die exit. It also increase with the die land dimension. By the DEFORMTM-3D analysis, the curving of T-shaped product in extrusion is changed by the eccentricity, die land length and the friction constant. The result of the analysis by DEFORMTM-3D software shows that the curvature of circular shaped product increases with the eccentricity. The two analysis and one experiment show the curving phenomenon in eccentric extrusion process.

  • PDF

A Study on Width Spread in 2-High Rolling of Rectangular Bars (각재의 냉간 2단 압연에 있어서의 폭 증가율에 관한 연구)

  • 윤상건;김동원;인정제
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.831-836
    • /
    • 1989
  • It was found that the effect of the friction between the roll and the workpiece on the spread ratio in flat rolling processes varies with the width-to-height ratio and the reduction in height by Tozawa, Oh and kobayashi numerically. In the present study, the barrelling profile accompanying the width spread was predicted by using the energy method proposed by Kato, which is known to be one of the most advanced method for the three dimensional analysis of the rolling process. The modified velocity field was applied to compute the width spread and the result was verified by experiments. the analysis by the energy method gave the result that the spread ratio increases with the friction factor when the width-to-height ratio is 1 and decreases when the ratio is larger then 2, being consistent with the results of Tozawa and Oh. Nevertheless the cold rolling experiment for pure aluminium showed that the spread ratio decreases with the increasing friction factor irrespective of the width-to-hight ratio.

A Study on the Forging of Internal Involute Gears with Alloy Steel (합금강을 이용한 내접 인벌류우트 기어의 단조에 관한 연구)

  • 최종웅;조해용;최재찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.90-98
    • /
    • 1998
  • Forging of internal involute gears with alloy steel has been analyzed by means of upper bound method. Kinematically admissible velocity fields for forging of internal gear were proposed. It was assumed that the shape of free flow surface during forging operation is a straight line perpendicular to the plane of symmetry. Using the suggested velocity fields, forging loads and relative pressures were calculated by numerical method. Consequently forging die should be successfully designed without fracture or failure during forging operation. Experiments were carried out with the designed die and SCM415 alloy steel as billet material. The calculated loads were compared with experimental one and they are in good agreement with experimental inspections. As a result, the calculated solutions would be useful to predict the loads and the designed die is suitable for forging of internal involute spur gear with alloy steel. The forged gear is measured to be KS 4 class and its class should be improved by subsequent working such as shaving after forging operation.

  • PDF

An Analysis for Drawing of Strip by UBET with Rigid Elements (강체요소를 이용한 인발 공정의 상계요소 해석)

  • Choi, Il-Kuk;Choi, Young;Hur, Kwan-Do
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.598-603
    • /
    • 2001
  • For metal forming analysis, upper-bound solution is practical method because the solution is overestimated. It is limited to determine stresses on tools by using upper-bound solution. In this study, new scheme to calculate stresses on tools based on upper bound solution is proposed. To verify the proposed scheme, plane strain drawing has been considered. The stresses on tools obtained by the proposed scheme are compared with results of rigid plastic FEM. And the stresses on tools have been determined by the proposed scheme in the forging within plane strain deformation.

  • PDF

Study on the Hydrofilm Extrusion through Conically Converging Dies (원추형 금형을 통한 박막식 정수압 압출 에 관한 연구)

  • 신동헌;조남선;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.2
    • /
    • pp.168-174
    • /
    • 1983
  • The study is concerned with an analysis on the hydrofilm extrusion through conical dies. The upper bound method is adopted for the analysis of metal deformation in connection with hydrodynamic lubrication theory for the lubricant in order to determine the extrusion pressure for some variables such as reduction of area, die cone angle. In the upper bound method, a kinematically admissible velocity field is found by assuming proper streamlines and applying the flow function concept to the region of plastic deformation. The effect of work hardening is incorporated approximately by calculating the strains at the exit of the die. The experiments are carried out with the commercially pure aluminium for some chosen variables at room temperature. It is shown that the theoretical predictions are in good agreement with the experimental observations.

An Analysis of Near-Net Forging of External Spline by an Upper Bound Elemental Technique (상계요소법에 의한 External Spline의 Near-Net 단조해석)

  • 양정호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.206-211
    • /
    • 1996
  • Closed-die forging of external spine is analysed using an upper bound elemental technique. The kinematically admissible velocity field for three-dimensional deformation in forging of the external spine with trapezoidal teeth was obtained. The upper bound to the deforming load necessary and the the deformed configurations are predicted using integration of the formulation of energy expressions which were obtained from B(upset forging method) were considerd in the present analysis and the theoretical results compared with experimental ones Experiments were carried out on plasticine as model material at room temperature where talcum powder was used as a lubricant. The present investigation revealed that the analytical method B predicts a reducet forging load and improved configuration better than method A for the forged products.

  • PDF

A Study on the Forging of Spur Gears with Variation of Inner Diameter in Hollow Billets (중공소재의 재경 변화에 따른 스퍼어기어 단조에 관한 연구)

  • 조해용;최재찬;최종웅;민규식
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.257-266
    • /
    • 1995
  • A simulation method based on upper bound method is developed in order to characterize forging characters in forging of spur gears. In this paper, utilizing a kinematically admissible velocity field and applying it to investigate the effect of inner diameter of holow billet. In the analysis, to predict the variation of inner diameter of hollw billet, neutral surface has been introduced. The neutral surface of each step is assumed as a circle and determined in order to have minimum forging energy by golden section method. By this method, the variation of inner diameter of billet during spur gear forging is successfully predicted. As a result, the selection of inner diameter of initial billet is very important to reduce the forging load.

  • PDF