• 제목/요약/키워드: Admissible Velocity Field

검색결과 61건 처리시간 0.022초

사각형 단면을 가진 제품의 압출가공시 제품의 굽힘현상에 관한 연구 (Study on the curving phenomenon of rectangular shaped product in extrusion process)

  • 진인태;최재찬
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 추계학술대회논문집
    • /
    • pp.7-13
    • /
    • 1996
  • The kinematically admissible velocity field is developed for the analysis of extruded products. The curving of product in extrusion is caused by the linearly distributed longitudinal velocity on the cross-section of the workpiece at the die exit. In the analysis, the longitudinal velocity in extrusion direction is divided into the uniform velocity and the deviated velocity. In order to satisfy the requrement of the kinematically admissible velocity field, the average value of the deviated velocity should be zero. At the same time, it should linearly change with the distance form the center of gravity of the cross-section of the workpiece. The results of the analysis show that the curvature of product increses with increses in eccentricity of gravity center of the cross-section of workpiece at die entrance form that of the cross-section at the die exit. In the analysis, the longitudinal velocity in extrusion direction is divided into the uniform velocity and the deviated velocity. In order to satisfy the requrement of the kinematically admissible velocity field, the average value of the deviated velocity should be zero. At the same time, it should linearly change with the distance from the center of gravity of the cross-section of the workpiece. The results of the analysis show that the curvature of product increses with increses in ecentricity of gravity center of the cross-section of workpiece at die entrance from that of the cross-section at the die exit.

  • PDF

내부세레이션홈을 갖는 스퍼어 기어의 단조에 관한 연구 (A Study on the Forging of Spur Gears with Internal Serrations)

  • 최종웅;조해용
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.81-89
    • /
    • 1998
  • Numerical calculation tools for forging of gear-like components based on kinematically admissible velocity fields for upper bound method applicable to various deformation features of workpiece in forging processes were suggested. Each one of them deals with unidirectional flow of metal on dies, such as external involute spur gear. square spline, internal serrations. A complex calculation tool of gear-like component forging process was built up by combining these kinematically velocity fields. In this paper the workpiece with 110th external and internal teeth is divided into two parts. The deformation of each part is analyzed simultaneously using numerical calculation tool from combined kinematically admissible velocity field. The experimental set-up was installed in a 200 ton hydraulic press. As a result, each kinematically admissible velocity field could be combined with others and the calculated solution are useful to predict the capacity of forging equipment.

  • PDF

내부세레이션홈이 존재하는 외치차 단조에 관한 연구 (A Study on the Forging of Gears with lnternal Serrations)

  • 최종용;조해용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.633-637
    • /
    • 1995
  • Numerical calculation tool for forging of gear-like components based on kinematically admissible velocity fields for upper bound method applicable to various deformation features of workpiece in forging processes were suggested. Each one of them deals with unidirectional flow of metal on dies, such as external involute spur gear, sequare spline, internal serrations. A complex calcuation tool of gear-like component forging process was built up by combining these kinematically velocity fields. In this paper, the workpiece with both external and internal teeth is divided into two parts. The deformation of each part is analyzed simultaneously using numerical calculation tool form combined kinematically admissible velocity field. The experimental set-up was installed in a 200 ton hydraulic press. As a result, each kinematically admissible velocity field could be combined with other and the calculated solution are useful to predict the capacity of forging equipment.

  • PDF

반용융 재료의 물성치 평가에 관한 연구(I) -후방압출의 상계해석을 위한 동적 가용 속도장의 제안- (A Study on Material Characterization of Semi-Solid Materials (I) -Proposal of New Velocity Field for Upper Bound Analysis of Backward Extrusion-)

  • 이주영;김낙수
    • 소성∙가공
    • /
    • 제8권4호
    • /
    • pp.364-373
    • /
    • 1999
  • For material characterization of semi-solid materials, backward extrusion process, which has been used in forming of hollow-sectioned products, was analyzed by the upper bound analysis in the current study. The existing kinematically admissible velocity field was applied to steady state at which there was no change in the assumed regions of velocity field. For unsteady state, new velocity field, as a function of dead zone angle, was proposed. Through the whole analysis, fiction between die and workpiece was also considered. It has been studied how the process variables, such as friction factor and punch velocity, and material parameters, such as strength coefficient, strain rate sensitivity could affect on analysis results. Finally, by the comparison with the finite element analysis, the reliability and efficiency of the proposed velocity field were discussed.

  • PDF

변형률 속도를 고려한 원형 튜브의 동적 좌굴 현상의 상계 해석에 관한 연구 (Upper Bound Analysis of Dynamic Buckling Phenomenon of Circular Tubes Considering Strain Rate Effect)

  • 박충희;고윤기;허훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.711-716
    • /
    • 2008
  • A circular tube undergoes bucking behavior when it is subjected to axial loading. An upper bound analysis can be an attractive approach to predict the buckling load and energy absorption efficiently. The upper bound analysis obtains the load or energy absorption by means of assumption of the kinematically admissible velocity fields. In order to obtain an accurate solution, kinematically admissible velocity fields should be defined by considering many factors such as geometrical parameters, dynamic effect, etc. In this study, experiments and finite element analyses are carried out for circular tubes with various dimensions and loading conditions. As a result, the kinematically admissible velocity field is newly proposed in order to consider various dimensions and the strain rate effect of material. The upper bound analysis with the suggested velocity field accurately estimates the mean load and energy absorption obtained from results of experiment and finite element analysis.

  • PDF

프로팅 프러그를 사용한 관재 인발가공에 관한 연구 (The Study on the Tube Drawing Process with a Floating Plug)

  • 최재찬;진인태
    • 한국정밀공학회지
    • /
    • 제5권4호
    • /
    • pp.24-31
    • /
    • 1988
  • The Upper Bound Solution has been used to investigate the effect of the various parameters on the floating-plug tube-drawing precess. A kinematically admissible velocity field considering the change of the tube thickness is proposed for the deformation process. Taking into account the position of the plug in the deforming region, shear energy at entrance and exit, friction energy on contact area, homogeneous energy are calculated. The theoretical values in proposed velocity field are good agreement with experimental values, It is investigated that the tube thickness in the deforming region is changed slightly toward minimization of deforming energy and then the drawing stress in lower than the crawing stress in the velocity field that the tube thickness is uniform.

  • PDF

원형제품의 압출가공시 제품의 굽힘현상에 관한 연구 (Study on the curving phenomenon of sylinderical product in extrusion process)

  • 최재찬;진인태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 추계학술대회논문집
    • /
    • pp.136-142
    • /
    • 1995
  • The kinematically admissible velocity field is developed for the analysis of extruded products. The curving of product in extrusion is caused by the linearly distributed longitudinal velocity on the cross-section of the workpiece at the die exit. In the analysis, the longitudinal velocity in extrusion direction is divided into the uniform velocity and the deviated velocity. In order to satify the requirement of the kinematically admissible velocity field, the average value of the deviated velocity should be zero. At the same time, it should Iinearly change with the destance from the center of gravity of the cross-section of the workpiece. The results of the analysis show that the curvature of product incresses with increses in eccentricity of gravity center of the cross-section of workpiece at die entrance from that of the cross-sectio at the die exit.

  • PDF

Upper Bound Analysis for Near-net Shape Forging of a Crown Gear Form

  • Lee, Seung-Dong;Kim, Won-Il;Kim, Yohng-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권2호
    • /
    • pp.94-104
    • /
    • 2000
  • A kinematically admissible velocity field for near-net shape forging of a crown gear form is proposed. This takes into account the profiled shape of the teeth chosen by approximating these kinematically as radially straight taper teeth, (rectangular and trapezoidal teeth). The upper bound to the forging load, the relative forging pressure and the deformed configurations, with both the initially solid circular cylindrical and hollow billets, are predicted using the velocity field at varying incremental punch movements considering differing frictional factors. These and other results are given and commented upon.

  • PDF

Socket Forming에 관한 상계해석 (An Upper-Bound Analysis of the Socket Forming Process)

  • 황범철;홍승진;배원병
    • 한국정밀공학회지
    • /
    • 제17권8호
    • /
    • pp.151-156
    • /
    • 2000
  • A kinematically-admissible velocity field is proposed to determine the forming load the average extruded length and the velocity distribution in the forward and backward extrusion process of a socket. Experiments are carried out with antimony-lead billets at room temperature using the rectangular punch and the hexagonal die. The theoretical predictions of the forming load and the average extruded length are in good agreement with the experimental results.

  • PDF

상계해석법을 이용한 평면변형 열간 판압연공정해석 (Upper Bound Analysis of Plane Strain Hot Strip Rolling Process)

  • 문영훈;천명식;이준성
    • 대한기계학회논문집A
    • /
    • 제20권8호
    • /
    • pp.2468-2479
    • /
    • 1996
  • An upper bound solution is obtained to perform the process analysis of hot strip rolling process. The material flows within the roll bite at various geometries and frictional conditions are obtained from finite element analysis and the typical flow pattern which is necessary to determine the kinematically admissible velocity field is assumed. From the kinematically admissible velocity field, the upper bound energy is calculated and the rolling load, angle of neutral point and forward slip ratio at various operational conditions are obtained from upper bound energy. The process analysis of above mentioned parameters at various operational conditions have provided valuable information which is hard to obtain during rolling operation and the predicted ranges of quantitive values from these analyses lie whthin the bound of actual operational data.