• Title/Summary/Keyword: Adjustment Parameters

Search Result 424, Processing Time 0.027 seconds

Unified modelling approach with concrete damage plasticity model for reliable numerical simulation: A study on thick flat plates under eccentric loads

  • Mohamed H. El-Naqeeb;Reza Hassanli
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.307-328
    • /
    • 2024
  • The concrete damage plasticity (CDP) model is widely used to simulate concrete behaviour using either implicit or explicit analysis methods. To effectively execute the models and resolve convergence issues in implicit analysis, activating the viscosity parameter of this material model is a common practice. Despite the frequent application of implicit analysis to analyse concrete structures with the CDP model, the viscosity parameter significantly varies among available models and lacks consistency. The adjustment of the viscosity parameter at the element/structural level disregards its indirect impact on the material. Therefore, the accuracy of the numerical model is confined to the validated range and might not hold true for other values, often explored in parametric studies subsequent to validations. To address these challenges and develop a unified numerical model for varied conditions, a quasi-static analysis using the explicit solver was conducted in this study. Fifteen thick flat plates tested under load control with different geometries and different eccentric loads were considered to verify the accuracy of the model. The study first investigated various concrete material behaviours under compression and tension as well as the concrete tensile strength to identify the most reliable models from previous methodologies. The study compared the results using both implicit and explicit analysis. It was found that, in implicit analysis, the viscosity parameter should be as low as 0.0001 to avoid affecting material properties. However, at the structural level, the optimum value may need adjustment between 0.00001 to 0.0001 with changing geometries and loading type. This observation raises concerns about further parametric study if the specific value of the viscosity parameter is used. Additionally, activating the viscosity parameter in load control simulations confirmed its inability to capture the peak load. Conversely, the unified explicit model accurately simulated the behaviour of the test specimens under varying geometries, load eccentricities, and column sizes. This study recommends restricting implicit solutions to the viscosity values proposed in this research. Alternatively, for highly nonlinear problems under load control simulation, explicit analysis stands as an effective approach, ensuring unified parameters across a wide range of applications without convergence problems.

Optimal National Coordinate System Transform Model using National Control Point Network Adjustment Results (국가지준점 망조정 성과를 활용한 최적 국가 좌표계 변환 모델 결정)

  • Song, Dong-Seob;Jang, Eun-Seok;Kim, Tae-Woo;Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_2
    • /
    • pp.613-623
    • /
    • 2007
  • The main purpose of this study is to investigate the coordinate transformation based on two different systems between local geodetic datum(tokyo datum) and international geocentric datum(new Korea geodetic datum). For this purpose, three methods were used to determine seven parameters as follows: Bursa-Wolf model, Molodensky-Badekas model, and Veis model. Also, we adopted multiple regression equation method to convert from Tokyo datum to KTRF. We used 935 control points as a common points and applied gross error analysis for detecting the outlier among those control points. The coordinate transformation was carried out using similarity transformation applied the obtained seven parameters and the precision of transformed coordinate was evaluated about 9,917 third or forth order control points. From these results, it was found that Bursa-Wolf model and Molodensky-Badekas model are more suitable than other for the determination of transformation parameters in Korea. And, transforming accuracy using MRE is lower than other similarity transformation model.

Study on the Optimal Selection of Rotor Track and Balance Parameters using Non-linear Response Models and Genetic Algorithm (로터 트랙 발란스(RTB) 파라미터 최적화를 위한 비선형 모델링 및 GA 기법 적용 연구)

  • Lee, Seong Han;Kim, Chang Joo;Jung, Sung Nam;Yu, Young Hyun;Kim, Oe Cheul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.989-996
    • /
    • 2016
  • This paper intends to develop the rotor track and balance (RTB) algorithm using the nonlinear RTB models and a real-coded hybrid genetic algorithm. The RTB response data computed using the trim solutions with variation of the adjustment parameters have been used to build nonlinear RTB models based on the quadratic interpolation functions. Nonlinear programming problems to minimize the track deviations and the airframe vibration responses have been formulated to find optimum settings of balance weights, trim-tab deflections, and pitch-link lengths of each blade. The results are efficiently resolved using the real-coded genetic algorithm hybridized with the particle swarm optimization techniques for convergence acceleration. The nonlinear RTB models and the optimized RTB parameters have been compared with those computed using the linear models to validate the proposed techniques. The results showed that the nonlinear models lead to more accurate models and reduced RTB responses than the linear counterpart.

DEM Generation by the Matching Line Using Exterior Orientation Parameters of the IKONOS Geo Imagery (IKONOS 위성영상의 외부표정요소로부터 정합선 수립에 의한 DEM 생성)

  • Lee, Hyo-Seong;Ahn, Ki-Weon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.4
    • /
    • pp.367-376
    • /
    • 2006
  • This study determines the optimum polynomial of exterior orientation parameters(EOPs) as a function of line number of linear array scanner. To estimate priori EOPs, meta data of IKONOS scene and ground control points are used. We select a first order polynomial and a constant for position elements modeling and rotation elements modeling. Positioning accuracy of the determined EOPs is compared with that of RPCs bias-corrected by the least squares adjustment. There is almost no difference between accuracies of the two methods. To obtain digital elevation model(DEM), matching line is established by the EOPs. The DEM is compared with DEM generated by ERDAS IMAGINE software, which utilizes the bias-corrected RPCs. Height differences of DEMs by the two methods are ranged within a allowable standard deviation. The produced DEM, therefore, shows accuracy similar to the verified method.

Precision GPS Orbit Determination and Analysis of Error Characteristics (정밀 GPS 위성궤도 결정 및 오차 특성 분석)

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.437-444
    • /
    • 2009
  • A bi-directional, multi-step numerical integrator is developed to determine the GPS (Global Positioning System) orbit based on a dynamic approach, which shows micrometer-level accuracy at GPS altitude. The acceleration due to the planets other than the Moon and the Sun is so small that it is replaced by the empirical forces in the Solar Radiation Pressure (SRP) model. The satellite orbit parameters are estimated with the least-squares adjustment method using both the integrated orbit and the published IGS (International GNSS Service) precise orbit. For this estimation procedure, the integration should be applied to the partial derivatives of the acceleration with respect to the unknown parameters as well as the acceleration itself. The accuracy of the satellite orbit is evaluated by the RMS (Root Mean Squares error) of the residuals calculated from the estimated orbit parameters. The overall RMS of orbit error during March 2009 was 5.2 mm, and there are no specific patterns in the absolute orbit error depending on the satellite types and the directions of coordinate frame. The SRP model used in this study includes only the direct and once-per-revolution terms. Therefore there is errant behavior regarding twice-per-revolution, which needs further investigation.

Preparation of Ni(OH)2 Hollow Spheres by Solvent Displacement Crystallization Using Micro-Injection Device (마이크로 주입장치를 이용한 용매치환결정화에 의한 중공상 수산화니켈 분말의 제조)

  • Kim, Seiki;Park, Kyungsoo;Jung, Kwang-Il
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.311-316
    • /
    • 2016
  • $Ni(OH)_2$ hollow spheres have been prepared by solvent displacement crystallization using a micro-injection device, and the effect of process parameters such as concentration and the relative ratio of the injection speed of the precursor solution, which is an aqueous solution of $NiSO_4{\cdot}6H_2O$, to isopropyl alcohol of displacement solvent have been investigated. The crystal phases after NaOH treatment are in the ${\beta}-phase$ for all process parameters. A higher concentration of $NiSO_4{\cdot}6H_2O$ aqueous solution is injected by a micro-injection device and bigger $Ni(OH)_2$ hollow spheres with a narrower particle size distribution are formed. The crystallinity and hardness of the as-obtained powder are so poor that hydrothermal treatment of the as-obtained $Ni(OH)_2$ at $120^{\circ}C$ for 24 h in distilled water is performed in order to greatly improve the crystallinity. It is thought that a relative ratio of the injection speed of $NiSO_4{\cdot}6H_2O$ to that of isopropyl alcohol of at least more than 1 is preferable to synthesize Ni(OH)2 hollow spheres. It is confirmed that this solution-based process is very effective in synthesizing ceramic hollow spheres by simple adjustment of the process parameters such as the concentration and the injection speed.

Design of the Adaptive Fuzzy Control Scheme and its Application on the Steering Control of the UCT (무인 컨테이너 운송 조향 제어의 적응 퍼지 제어와 응용)

  • 이규준;이영진;윤영진;이원구;김종식;이만형
    • Journal of Korean Port Research
    • /
    • v.15 no.1
    • /
    • pp.37-46
    • /
    • 2001
  • Fuzzy logic control(FLC) is composed of three parts : fuzzy rule-bases, membership functions, and scaling factors. Well-defined fuzzy rule-base should contain proper physical intuition on the plant, so are needed lots of experiences of the skillful expert. When membership functions are considered, some parameters on the memberships function such as function shape, support, allocation density should be selected well. The rule of scaling factors is 'scaling'(amplifying or reducing) for both input and output signals of the FLC to fit in the membership function support and to operate the plant intentionally. To get a better performance of the FLC, it is necessary to adjust the parameters of the FLC. In general, the adaptation of the scaling factors is the most effective adjustment scheme, compared with that of the fuzzy rule-base or membership function parameters. This study proposes the adaptation scheme of the scaling factors. When the adaptation is performed on-line, the stability of the adaptive FLC should be guaranteed. The stable FLC system can be designed with stability analysis in the sense of Lyapunov stability. To adapt the scaling factors for the error signals, the concept of the conventional MRAC would be introduced into slightly modified form. A tracking accuracy of the control system would be enhanced by the modified shape and support of the membership function. The simulation is achieved on the pilot plant with the hydraulic steering control of a UCT(Unmanned Container Transporter) of which modeling dynamics have lots of severe uncertainties and modeling errors.

  • PDF

Daily walnut intake improves metabolic syndrome status and increases circulating adiponectin levels: randomized controlled crossover trial

  • Hwang, Hyo-Jeong;Liu, Yanan;Kim, Hyun-Sook;Lee, Heeseung;Lim, Yunsook;Park, Hyunjin
    • Nutrition Research and Practice
    • /
    • v.13 no.2
    • /
    • pp.105-114
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Several previous studies have investigated whether regular walnut consumption positively changes heart-health-related parameters. The aim of this study was to investigate the effects of daily walnut intake on metabolic syndrome (MetS) status and other metabolic parameters among subjects with MetS. SUBJECTS/METHODS: This study was a two-arm, randomized, controlled crossover study with 16 weeks of each intervention (45 g of walnuts or iso-caloric white bread) with a 6 week washout period between interventions. Korean adults with MetS (n = 119) were randomly assigned to one of two sequences; 84 subjects completed the trial. At each clinic visit (at 0, 16, 22, and 38 weeks), MetS components, metabolic parameters including lipid profile, hemoglobin A1c (HbA1c), adiponectin, leptin, and apolipoprotein B, as well as anthropometric and bioimpedance data were obtained. RESULTS: Daily walnut consumption for 16 weeks improved MetS status, resulting in 28.6%-52.8% reversion rates for individual MetS components and 51.2% of participants with MetS at baseline reverted to a normal status after the walnut intervention. Significant improvements after walnut intake, compared to control intervention, in high-density lipoprotein cholesterol (HDL-C) (P = 0.028), fasting glucose (P = 0.013), HbA1c (P = 0.021), and adiponectin (P = 0.019) were observed after adjustment for gender, age, body mass index, and sequence using a linear mixed model. CONCLUSION: A dietary supplement of 45 g of walnuts for 16 weeks favorably changed MetS status by increasing the concentration of HDL-C and decreasing fasting glucose level. Furthermore, consuming walnuts on a daily basis changed HbA1c and circulating adiponectin levels among the subjects with MetS. This trial is registered at ClinicalTrials.gov as NCT03267901.

Evaluation of brown rice to replace corn in weanling pig diet

  • Kim, Sheena;Cho, Jin Ho;Kim, Hyeun Bum;Song, Minho
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1344-1354
    • /
    • 2021
  • This study was conducted to evaluate the effects of brown rice (Japonica) on growth performance, nutrient digestibility, and blood parameters of weanling pigs. A total of 60 weanling pigs (28-day-old, 30 barrows and 30 gilts, 6.73 ± 0.77 kg body weight [BW]) were randomly allotted to 2 dietary treatments (6 pigs per pen; 5 replicates per treatment) in a randomized complete block design with the initial BW and sex as blocks. The dietary treatments were a typical nursery diet based on corn and soybean meal (CON) and the CON replaced 50% of corn with brown rice (BR). Pigs were fed respective dietary treatments for 5 weeks. For the last week of experiment period, pigs were fed respective dietary treatments containing 0.2% chromic oxide as an indigestible marker. Fecal samples were collected from randomly selected 1 pig in each pen daily for the last 3 d after the 4-d adjustment period. Blood was collected from randomly selected 1 pig in each pen on d 0, 3, 7, and 14 after weaning. Compared with pig fed CON diet, pigs fed the BR diet were found to have higher (p < 0.05) final BW, overall average daily gain, and apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of dry matter and energy. However, there were no significant differences between the groups with respect to average daily feed intake, gain to feed ratio, frequency of diarrhea, and the AID and ATTD of crude protein during overall experimental period. Similarly, there were no significant differences on blood parameters between the groups. Thus, the findings of this study indicate that brown rice (Japonica) can be used to replace 50% of corn in the diet of pigs during the nursery period without negatively affecting growth performance, nutrient digestibility, or blood parameters.

Study on load tracking characteristics of closed Brayton conversion liquid metal cooled space nuclear power system

  • Li Ge;Huaqi Li;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1584-1602
    • /
    • 2024
  • It is vital to output the required electrical power following various task requirements when the space reactor power supply is operating in orbit. The dynamic performance of the closed Brayton cycle thermoelectric conversion system is initially studied and analyzed. Based on this, a load tracking power regulation method is developed for the liquid metal cooled space reactor power system, which takes into account the inlet temperature of the lithium on the hot side of the intermediate heat exchanger, the filling quantity of helium and xenon, and the input amount of the heat pipe radiator module. After comparing several methods, a power regulation method with fast response speed and strong system stability is obtained. Under various changes in power output, the dynamic response characteristics of the ultra-small liquid metal lithium-cooled space reactor concept scheme are analyzed. The transient operation process of 70 % load power shows that core power variation is within 30 % and core coolant temperature can operate at the set safety temperature. The second loop's helium-xenon working fluid has a 65K temperature change range and a 25 % filling quantity. The lithium at the radiator loop outlet changes by less than ±7 K, and the system's main key parameters change as expected, indicating safety. The core system uses less power during 30 % load power transient operation. According to the response characteristics of various system parameters, under low power operation conditions, the lithium working fluid temperature of the radiator circuit and the high-temperature heat pipe operation temperature are limiting conditions for low-power operation, and multiple system parameters must be coordinated to ensure that the radiator system does not condense the lithium working fluid and the heat pipe.