• Title/Summary/Keyword: Adjustment Parameters

Search Result 424, Processing Time 0.033 seconds

Evaluation of Allowable Bending Stress of Dimension Lumber; Confidence Levels and Size-adjustment

  • Pang, Sung-Jun;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.432-439
    • /
    • 2013
  • The aim of this study was to investigate the processes for evaluating the allowable bending stress. The confidence levels and the size-adjustment in standards were reviewed with experimental data. The results show that, (1) KS F 2152 was more strict than others overseas standards due to the higher confidence level. The 5% NTL of bending strengths by a method in KS F 2152 were lower than the overseas standards and more specimens were required for evaluating the structural properties according to KS F 2152. (2) Due to the absence of size-adjustment method in domestic standards, the specified size and the exponential parameters on the size-adjustment equation were reviewed by size factors. The specified size (width: 286 mm, length: 6096 mm), and the exponential parameters (w: 0.29, l: 0.14) will be suitable for developing the allowable bending stress in domestic standard. (3) The size adjusted allowable bending stresses of No. 2 grade Korean pine were lower than the allowable stresses tabulated in KBC even though less strict method (75% confidence level) to calculate 5% value was used. The allowable stresses tabulated in KBC are needed to be reviewed by continuous experimental data.

The Correction of Systemetic Error of Three Dimensional Positioning using SPOT Imagery (SPOT 영상(映像)을 이용(利用)한 3차원(次元) 위치결정(位置決定)에 있어서 정오차(定誤差) 보정(補正)에 관한 연구(研究))

  • Yeu, Bock Mo;Jung, Young Dong;Lee, Hyun Jik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.121-128
    • /
    • 1992
  • This study aims to define the algorithm for self-calibration bundle adjustment with additional parameters, which is fit for the correction systematic errors in the SPOT satellite imagery, and to present a suitable term of additional parameters for the data form of SPOT satellite imagrery. As a result, an algorithm of self-calibration bundle adjustment for SPOT satellite imagery was settles, and the computer program was developed. Also, the suitable term of additional parameters to correct the systematic errors for each data form was defined through examination for determination effect of additional parameters and significance test. The algorithm of self-calibration bundle adjustment for SPOT satellite imagery according to this study could improve the accuracy of positioning.

  • PDF

런규칙을 사용한 개량된 경계선 수정계획의 설계와 Markov 연쇄의 적용

  • 박창순
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.413-418
    • /
    • 2004
  • The bounded adjustment is known to be more efficient than repeated adjustment when the cost is incurred for engineering process control. The procedure of the bounded adjustment is to adjust the process when the one-step predicted deviation exceeds the adjustment limit by the amount of the prediction. In this paper, two run rules are proposed and studied in order to improve the efficiency of the traditional bounded adjustment procedure. The efficiency is studied in terms of the standardized cost through Monte Carlo simulation when the procedure is operated with and without the run rules. The adjustment procedure operated with run rules turns out to be more robust for changes in the process and cost parameters. The Markov chain approach for calculating the properties of the run rules is also studied.

  • PDF

Positioning Accuracy Analysis of KOMPSAT-3 Satellite Imagery by RPC Adjustment (RPC 조정에 의한 KOMPSAT-3 위성영상의 위치결정 정확도 분석)

  • Lee, Hyoseong;Seo, Doochun;Ahn, Kiweon;Jeong, Dongjang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.503-509
    • /
    • 2013
  • The KOMPSAT-3 (Korea Multi-Purpose Satellite-3), was launched on May 18, 2012, is an optical high-resolution observation mission of the Korea Aerospace Research Institute and provides RPC(Rational Polynomial Coefficient) for ground coordinate determination. It is however need to adjust because RPC absorbs effects of interior-exterior orientation errors. In this study, to obtain the suitable adjustment parameters of the vendor-provided RPC of the KOMPSAT-3 images, six types of adjustment models were implemented. As results, the errors of two and six adjustment parameters differed approximately 0.1m. We thus propose the two parameters model, the number of control points are required the least, to adjust the KOMPSAT-3 R PC. According to the increasing the number of control points, RPC adjustment was performed. The proposed model with a control point particularly did not exceed a maximum error 3m. As demonstrated in this paper, the two parameters model can be applied in RPC adjustment of KOMPSAT-3 stereo image.

A Study on Bundle Block Adjustment with Additional Parameters (부가매개변수(附加媒介變數)를 고려(考慮)한 번들블럭조정(調整)에 관(關)한 연구(硏究))

  • Yeu, Bock Mo;Kwon, Hyon;Lee, Hyun Jik;Jeong, Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.87-94
    • /
    • 1990
  • In this study, the block adjustments are perfomed by bundle adjustment method of analytical photogrammetry, and the characteristics of 3-dimensional errors for the objects are analysed. The optimal arrangement and configuration of the control points is selected from various arrangements and configurations of control points, and the accuracies of result obtained by block adjustment and by single model adjustment are compared, And the accuracy of bundle block adjustment is compared with that of the independent model triangulation which is another method in block adjustment with additional parameters by selecting the suitable systematic error model. As a result of this study, an the effective method to improve accuracy in close-range photogrammetry was presented by forming blocks and using bundle block adjustment with proper arrangement and configuration of control poinst.

  • PDF

Distortion Correction Modeling Method for Zoom Lens Cameras with Bundle Adjustment

  • Fang, Wei;Zheng, Lianyu
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.140-149
    • /
    • 2016
  • For visual measurement under dynamic scenarios, a zoom lens camera is more flexible than a fixed one. However, the challenges of distortion prediction within the whole focal range limit the widespread application of zoom lens cameras greatly. Thus, a novel sequential distortion correction method for a zoom lens camera is proposed in this study. In this paper, a distortion assessment method without coupling effect is depicted by an elaborated chessboard pattern. Then, the appropriate distortion correction model for a zoom lens camera is derived from the comparisons of some existing models and methods. To gain a rectified image at any zoom settings, a global distortion correction modeling method is developed with bundle adjustment. Based on some selected zoom settings, the optimized quadratic functions of distortion parameters are obtained from the global perspective. Using the proposed method, we can rectify all images from the calibrated zoom lens camera. Experimental results of different zoom lens cameras validate the feasibility and effectiveness of the proposed method.

A Study on the Optimal Cutting Condition of High Speed Feeding Type Laser Cutting Machine by Taguchi Method (다구찌 방법을 이용한 고속 이송방식 레이저 절단기의 최적 절단 조건에 관한 연구)

  • 임상헌;박동근;이춘만
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.77-83
    • /
    • 2004
  • Cutting by a high speed laser cutting machine is one of most effective technologies to improve productivity. This paper has studied to obtain the cutting characteristics and optimal cutting conditions in a high speed feeding type laser cutting machine by Tacuchi method in design of experiments. A Lf(34) orthogonal array is adopted to study the effect of adjustment parameter. The adjustment parameters consist of cutting speed, laser power, laser output duty and assistant gas pressure. And the quality feature is selected as surface roughness of sheet metal. Variance analysis is performed in order to evaluate the effect of adjustment parameters on the quality feature of laser cutting process.

Parameter Reduction in Digital Adaptive Flight Control System for Spaceplanes

  • Togasaki, Yoshihiro;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.995-1000
    • /
    • 2004
  • A digital adaptive flight control system is presented for a Japanese automatic landing flight experiment vehicle (ALFLEX). In previous adaptive control systems based on a linear-parameter-varying (LPV) form, the output behavior was excellent, while the behavior of the adjusted parameters was unsatisfactory. In the present study, to obtain a more appropriate parameter adjustment law, the relationship between the coefficient matrices in a continuous-time state equation and the coefficients of a pulse transfer function in a discrete system for conventional aircraft is investigated. As a result, it is revealed that the coefficients of the numerator can be treated as a linear function of dynamic pressure (linear-parameter-varying: LPV), while the coefficients of the denominator can be treated as constant (linear-time-invariant: LTI). From the above analysis, an improved parameter adjustment law is derived by reducing the number of the adjustment parameters. Simulation results also revealed both good output tracking and good parameter adjustment compared with the previous results.

  • PDF

Exterior Orientation Parameters Determination from Satellite Imagery RPC Camera Model (위성영상 RPC 카메라 모델로부터 외부표정요소 결정)

  • Lee Hyo Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.1
    • /
    • pp.59-67
    • /
    • 2005
  • This paper proposes method for determining exterior orientation parameters (EOPs) from the RPC mathematical camera model of the satellite image. SPOT satellite stereo pair is pre-tested using the proposed method. As results that, geopositioning errors are similar with those of the original EOPs. Differences between EOPs determined from the RPC and original EOPs were small. IKONOS Geo-level stereo pair is tested by the proposed method. Results of this method are compared with those of the RPC block adjustment method which have been verified in reported studies. Consequently, the proposed method showed accuracy similar to the RPC block adjustment method. The digital elevation models (DEMs) of sample area acquired by the two method almost did not have a difference.

A Speed Characteristics of the Ultrasonic Motor by the Multi-Parameters adjustment with Phase difference-Frequency (위상차-주파수 다중 파라미터 조절에 의한 초음파 모터 속도 특성)

  • Kim, Dong-Ok;Kang, Won-Chan;Kim, Sung-Cheol;Oh, Geum-Kon;Kim, Young-Dong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.1
    • /
    • pp.20-27
    • /
    • 2003
  • In this study, we designed and made Ultrasonic motor-digital multi controller(USM-DMC) using FPGA chip, A54SX72A made in Actel Corporation. By the minute, USM-DMC can adjust the frequency, duty ratio, and phase difference parameters of USM by digital input to be each 11bit from PC. Therefore, when we use this controller, it is possible to apply typical three parameters individually as well as multi-parameters simultaneously to control the speed and the torque. What is more, the strongest point is that it can trace frequency based on optimized frequency as compared with the phase difference because we can input optimized resonant frequency while in motoring. And we test the speed of USM with the adjustment of multi-parameters, the phase difference-frequency. As the result of the test, in the case of the multi-parameters of the phase difference and frequency, the speed characteristic is more linear and stable, and wider in the range of control than the single-parameter of the phase difference or the frequency.