• Title/Summary/Keyword: Adjoint Method

Search Result 206, Processing Time 0.022 seconds

Topology Design Optimization of Three Dimensional Structures for Heat Conduction Problems (열전도 문제에 대한 3 차원 구조물의 위상 최적설계)

  • Moon Se-Joon;Cho Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.327-334
    • /
    • 2005
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis (DSA) method applicable to 3-Dimensional heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume, respectively, Through several numerical examples, the developed DSA method is verified to yield efficiency and accurate sensitivity results compared with finite difference ones. Also, the topology optimization yields physical meaningful results.

  • PDF

Shape Design Sensitivity Analysis of Two-Dimensional Thermal Conducting Solids with Multiple Domains Using the Boundary Element Method (경계요소법을 이용한 2 차원 복수 영역 열전도 고체의 형상 설계 민감도 해석)

  • 이부윤;임문혁
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.175-184
    • /
    • 2003
  • A method of the shape design sensitivity analysis based on the boundary integral equation formulation is presented for two-dimensional inhomogeneous thermal conducting solids with multiple domains. Shape variation of the external and interface boundary is considered. A sensitivity formula of a general performance functional is derived by taking the material derivative to the boundary integral identity and by introducing an adjoint system. In numerical analysis, state variables of the primal and adjoint systems are solved by the boundary element method using quadratic elements. Two numerical examples of a compound cylinder and a thermal diffuser are taken to show implementation of the shape design sensitivity analysis. Accuracy of the present method is verified by comparing analyzed sensitivities with those by the finite difference. As application to the shape optimization, an optimal shape of the thermal diffuser is found by incorporating the sensitivity analysis algorithm in an optimization program.

Application of Discrete-Ordinate Method to the Time Dependent Radiative Heat Transfer Calculations (방향차분법을 적용한 시간종속 복사 열전달 계산)

  • Noh, Tae-Wan
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.250-255
    • /
    • 2006
  • In this study, the discrete ordinates method which has been widely used in the solution of neutron transport equation is applied to the solution of the time dependent radiative transfer equation. The self-adjoint form of the second order radiation intensity equation is used to enhance the stability of the solution, and a new multi-step linearization method is developed to avoid the nonlinearity in the material temperature equation. This new solution method is applied to the well known Marshak wave problem, and the numerical result is compared with that of the conventional Monte-Carlo method.

OPTIMAL SHAPE DESIGN OF A S-SHAPED SUBSONIC INTAKE USING NURBS (NURBS를 이용한 S형 천음속 흡입관 최적 설계)

  • Lee B.J.;Kim C.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.57-66
    • /
    • 2006
  • An optimal shape design approach is presented for a subsonic S-shaped intake using aerodynamic sensitivity analysis. Two-equation turbulence model is employed to capture strong counter vortices in the S-shaped duct more precisely. Sensitivity analysis is performed for the three-dimensional Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method For code validation, the result of the flow solver is compared with experiment data and other computational results of bench marking test. To study the influence oj turbulence models and grid refinement on the duct flow analysis, the results from several turbulence models are compared with one another and the minimum number of grid points, which can yield an accurate solution is investigated The adjoint variable code is validated by comparing the complex step derivative results. To realize a sufficient and flexible design space, NURBS equations are introduced as a geometric representation and a new grid modification technique, Least Square NURBS Grid Approximation is applied With the verified flow solver, the sensitivity analysis code and the geometric modification technique, the optimization of S-shaped intake is carried out and the enhancement of overall intake performance is achieved The designed S-shaped duct is tested in several off-design conditions to confirm the robustness of the current design approach. As a result, the capability and the efficiency of the present design tools are successfully demonstrated in three-dimensional highly turbulent internal flow design and off-design conditions.

Development of An Optimal Design Program for Open-Chain Dynamic Systems (불구속연쇄 동적시스템을 위한 최적설계 프로그램 개발)

  • 최동훈;한창수;이동수;서문석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.12-23
    • /
    • 1994
  • This paper proposes an optimal design software for the open-chain dynamic systems whose governing equations are expressed as differential equation. In this software, an input module and an automatic creation module of the equation of motion are developed to contrive the user's convenience. To analyze the equation of motion of the dynamic systems, variable-order and variable-stepsize Adams-Bashforth-Moulton predictor-corrector method is used to improve the efficiency. For the optimization and the design sensitivity analysis, ALM(augmented lagrange multiplier)method and adjoint variable method are adopted respectively. An output module with which the user can compare and investigate the analysis and the optimization results through tables and graphs is also provided. The developed software is applied to three typical dynamic response optimization problems, and the results compare very well with those available in the literature, demonstrating its effectiveness.

Robust Design Optimization of a Fighter Wing Using an Uncertainty Model Constructed by Neural Network (신경망으로 구축된 불확실성 모델을 이용한 전투기 날개의 강건 최적 설계)

  • Kim, Ju-Hyun;Kim, Byung-Kon;Jun, Sang-Ook;Jeon, Yong-Hee;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.99-104
    • /
    • 2008
  • This study performed robust design optimization of fighter wing planform, considering uncertainty based on neural network model. To construct uncertainty model, aerodynamic performance and their sensitivity were evaluated by 3-dimensional Euler equations and adjoint variable method at experimental points selected from central composite design. In addition, because a neural network model has the advantage of capturing non-linear characteristic, it was possible to predict sensitivity of the aerodynamic performance efficiently and accurately . From the results of robust design optimization, it could be confirmed that the robustness of the objective function and constraints were improved if the variation of uncertainty and sigma level were increased.

A Study on the Stochastic Sensitivity Analysis in Dynamics of Frame Structure (프레임 구조물의 확률론적 동적 민감도 해석에 관한 연구)

  • 부경대학교
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.4
    • /
    • pp.435-447
    • /
    • 1999
  • It is main objective of this approach to present a method to analyse stochastic design sensitivity for problems of structural dynamics with randomness in design parameters. A combination of the adjoint variable approach and the second order perturbation method is used in the finite element approach. An alternative form of the constant functional that holds for all times is introduced to consider the time response of dynamic sensitivity. The terminal problem of the adjoint system is solved using equivalent homogeneous equations excited by initial velocities. The numerical procedures are shown to be much more efficient when based on the fold superposition method: the generalized co-ordinates are normalized and the correlated random variables are transformed to uncorrelated variables, whereas the secularities are eliminated by the fast Fourier transform of complex valued sequences. Numerical algorithms have been worked out and proved to be accurate and efficient : they can be readily adapted to fit into the existing finite element codes whose element derivative matrices can be explicitly generated. The numerical results of two cases -2 dimensional portal frame for the comparison with reference and 3-dimensional frame structure - for the deterministic sensitivity analysis are presented.

  • PDF

Parallel 3-D Aerodynamic Shape Optimization on Unstructured Meshes

  • Lee, Sang-Wook;Kwon, Oh-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.45-52
    • /
    • 2003
  • A three-dimensional aerodynamic shape optimization technique in inviscid compressible flows is developed by using a parallel continuous adjoint formulation on unstructured meshes. A new surface mesh modification method is proposed to overcome difficulties related to patch-level remeshing for unstructured meshes, and the effect of design sections on aerodynamic shape optimization is examined. Applications are made to three-dimensional wave drag minimization problems including an ONERA M6 wing and the EGLIN wing-pylon-store configuration. The results show that the present method is robust and highly efficient for the shape optimization of aerodynamic configurations, independent of the number of design variables used.

Analysis of Microwave Inverse Scattering Using the Broadband Electromagnetic Waves (광대역 전자파를 이용한 역산란 해석 연구)

  • Lee Jung-Hoon;Chung Young-Seek;So Joon-Ho;Kim Junyeon;Jang Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.158-164
    • /
    • 2006
  • In this paper, we proposed a new algorithm of the inverse scattering for the reconstruction of unknown dielectric scatterers using the finite-difference time-domain method and the design sensitivity analysis. We introduced the design sensitivity analysis based on the gradient information for the fast convergence of the reconstruction. By introducing the adjoint variable method for the efficient calculation, we derived the adjoint variable equation. As an optimal algorithm, we used the steepest descent method and reconstructed the dielectric targets using the iterative estimation. To verify our algorithm, we will show the numerical examples for the two-dimensional $TM^2$ cases.