• 제목/요약/키워드: Adjacent Object

검색결과 152건 처리시간 0.032초

LSG:모델 기반 3차원 물체 인식을 위한 정형화된 국부적인 특징 구조 (LSG;(Local Surface Group); A Generalized Local Feature Structure for Model-Based 3D Object Recognition)

  • 이준호
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.573-578
    • /
    • 2001
  • This research proposes a generalized local feature structure named "LSG(Local Surface Group) for model-based 3D object recognition". An LSG consists of a surface and its immediately adjacent surface that are simultaneously visible for a given viewpoint. That is, LSG is not a simple feature but a viewpoint-dependent feature structure that contains several attributes such as surface type. color, area, radius, and simultaneously adjacent surface. In addition, we have developed a new method based on Bayesian theory that computes a measure of how distinct an LSG is compared to other LSGs for the purpose of object recognition. We have experimented the proposed methods on an object databaed composed of twenty 3d object. The experimental results show that LSG and the Bayesian computing method can be successfully employed to achieve rapid 3D object recognition.

  • PDF

MRF 입자필터 멀티터치 추적 및 제스처 우도 측정 (MRF Particle filter-based Multi-Touch Tracking and Gesture Likelihood Estimation)

  • 오치민;신복숙;;이칠우
    • 스마트미디어저널
    • /
    • 제4권1호
    • /
    • pp.16-24
    • /
    • 2015
  • 본 논문에서는 멀티터치 추적 및 제스처 인식을 위하여 MRF기반 입자필터와 제스처 우도 측정 방법을 제안한다. 멀티터치 추적에서 자주 발생하는 문제 중 하나는 강탈 문제이며 터치 객체 추적기가 이웃 터치 객체에게 빼앗기는 현상을 가리킨다. 강탈 문제의 원인은 입자필터의 예측 입자들이 이웃 터치 객체에 가까이 갈 경우 입자의 가중치(우도)가 낮아야 하지만 이웃 객체 영향으로 높게 계산되는 오류 때문이다. 따라서 MRF를 기반으로 이웃 객체에 가까운 입자의 가중치를 낮추는 벌점함수를 정의한다. MRF가 멀티터치를 노드로 정의하고 거리가 가까운 이웃 멀티터치들을 에지로 표현한 그래프정보이므로 이웃 멀티터치들에 대한 데이터구조로 활용되기 쉽다. 또한 MRF 그래프 정보를 바탕으로 멀티터치 제스처 분석이 가능하다. 본 논문에서는 MRF를 기반으로 다양한 제스처 우도를 정의할 수 있는 방법을 서술한다. 실험 결과에서는 제안 방법이 효과적으로 강탈 현상을 회피하고 멀티터치 제스처 우도를 정확히 측정할 수 있음을 확인할 수 있다.

Salient Object Detection via Adaptive Region Merging

  • Zhou, Jingbo;Zhai, Jiyou;Ren, Yongfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4386-4404
    • /
    • 2016
  • Most existing salient object detection algorithms commonly employed segmentation techniques to eliminate background noise and reduce computation by treating each segment as a processing unit. However, individual small segments provide little information about global contents. Such schemes have limited capability on modeling global perceptual phenomena. In this paper, a novel salient object detection algorithm is proposed based on region merging. An adaptive-based merging scheme is developed to reassemble regions based on their color dissimilarities. The merging strategy can be described as that a region R is merged with its adjacent region Q if Q has the lowest dissimilarity with Q among all Q's adjacent regions. To guide the merging process, superpixels that located at the boundary of the image are treated as the seeds. However, it is possible for a boundary in the input image to be occupied by the foreground object. To avoid this case, we optimize the boundary influences by locating and eliminating erroneous boundaries before the region merging. We show that even though three simple region saliency measurements are adopted for each region, encouraging performance can be obtained. Experiments on four benchmark datasets including MSRA-B, SOD, SED and iCoSeg show the proposed method results in uniform object enhancement and achieve state-of-the-art performance by comparing with nine existing methods.

근접 에지를 이용한 개선된 스네이크 알고리즘 (An Improved Snake Algorithm Using Neighbouring Edges)

  • 장석우;온진욱;김계영
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권11호
    • /
    • pp.866-870
    • /
    • 2010
  • 본 논문에서는 근접 에지라는 새로운 에너지 항을 추가한 개선된 스네이크 알고리즘을 제안한다. 제안된 알고리즘은 스네이크 셀 주위에 근접하는 에지가 있을 경우 이 에지와 스네이크 셀 간의 거리를 에너지로 나타내고, 이 에너지를 전체 에너지 함수에 포함시킴으로써 물체의 윤곽선 탐색을 보다 효과적으로 수행한다. 근접 에지 기반의 스네이크 알고리즘은 셀이 물체의 오목한 경계 부분으로 탐색하는 것을 가능하게 하며, 에너지 항 사이에 실험적인 가중치 조정을 거치지 않고도 복잡한 물체의 윤곽선을 강인하게 검출할 수 있다. 제안된 방법의 성능 평가를 위한 실험에서는 개선된 스네이크 알고리즘이 속도를 크게 저하시키지 않으면서 윤곽선 추출의 정확도를 보다 개선하였음을 확인할 수 있었다.

이동 물체의 상호 발생 특징정보를 이용한 동영상에서의 이동물체 추적 (Moving Object Tracking Using Co-occurrence Features of Objects)

  • Kim, Seongdong;Seongah Chin;Moonwon Choo
    • 지능정보연구
    • /
    • 제8권2호
    • /
    • pp.1-13
    • /
    • 2002
  • 본 논문에서는 연속적으로 입력되는 칼라영상에서 물체의 이동에 의하여 형성된 동작영역을 확인하고, 영상의 시컨스(sequence)를 대상으로 움직이는 물체의 형태인 보행자 혹은 자동차들의 이동방향을 추적하는 시스템을 제안하였다. 카메라가 고정되어 있고 물체가 이동하는 상황에서 카메라시계에 진입하는 물체를 포착하여, 포착된 물체의 영역을 차 영상 분석을 통해 이진화하여 추출하고, 추출된 영역을 co-occurrence matrix의 RGB full 칼라의 특징 벡터를 추출하는 것을 제시하였다 추출되어지는 칼라 특징벡터를 분석하여 인접 프레임간의 이동물체 영역끼리의 대응관계를 조사함으로서, 이동물체를 추적한다. 군집화(clustering) 단계에서는 이전 단계에서 추출한 특징 벡터들 가운데 에너지, 엔트로피만을 가지고 인접 프레임간의 군집화를 조사하기 위하여 이동물체 영역들 간의 퍼지동적물체 정합 알고리즘을 적용시켰다. 인접 프레임간의 움직임 영역의 물체들에 대하여 멤버 쉽 함수를 근거로 중심 값을 계산하면, 동일 물체일 경우 중심 값 부근에서 군집이 형성되며, 이를 바탕으로 이동물체를 추출할 수 있는 방안을 제안하였다.

  • PDF

A Study on Object Detection in Region-of-Interest Algorithm using Adjacent Frames based Image Correction Algorithm for Interactive Building Signage

  • Lee, Jonghyeok;Choi, Jinyeong;Cha, Jaesang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제10권2호
    • /
    • pp.74-78
    • /
    • 2018
  • Recently, due to decrease hardware prices and the development of technology, analog signage has been changing to digital signage for providing content such as advertisements, videos. Furthermore, in order to provide advertisements and contents to users more effectively, technical researches are being conducted in various industries. In addition, including digital signage that uses displays, it can be seen that it provides advertisements and contents using diverse devices such as LED signage, smart pads, and smart phones. However, most digital signage is installed in one place to provide contents and provides interactivity through simple events such as manual content provision or touch. So, in this paper, we suggest a new object detection algorithm based on an adjacent frames based image correction algorithm for interactive building signage.

Range 정보로부터 3차원 물체 분할 및 식별 (Segmentation and Classification of 3-D Object from Range Information)

  • 황병곤;조석제;하영호;김수중
    • 대한전자공학회논문지
    • /
    • 제27권1호
    • /
    • pp.120-129
    • /
    • 1990
  • In this paper, 3-dimensional object segmentation and classification are proposed. Planar object is segmented surface using jump boundary and internal boundary. Curved object is segmented surfaces by maximin clustering method. Segmented surfaces are classified by depth trends and angle measurement of normal vectors. Classified surfaces are merged according to adjacent surfaces and compared to Guassian curvature and mean curvature method. The proposed methods have been successfully applied to the synthetic range images and shows good classification.

  • PDF

스테레오 영상에서 변이 정보를 결합한 새로운 스네이크 알고리즘 (A New Snakes Algorithm Combined with Disparity Information in the Stereo Images)

  • 김신형;전병태;장종환
    • 한국통신학회논문지
    • /
    • 제28권11C호
    • /
    • pp.1088-1097
    • /
    • 2003
  • 본 논문에서는 능동윤곽모델(active contour model)로 잘 알려져 있는 스네이크(snakes)알고리즘을 MPEG-4 기반의 스테레오 영상의 객체분할에 적용하는 방법을 제안한다. 일반적으로 2차원 영상에 적용하는 기존 스네이크 알고리즘은 객체의 윤곽이 아닌 주변의 영향으로 만족할 만한 결과를 얻지 못한다. 따라서 관심 객체의 윤곽선에 가까이 초기 스네이크 포인트를 사용자가 직접 설정해야 한다. 본 논문에서는 스테레오 영상의 변이(disparity)정보를 이용하여 객체의 윤곽선 주위의 영향을 줄여 객체분할의 성능을 개선하였고, 사용자가 영역설정을 통해 초기 스네이크 포인트를 자동으로 설정할 수 있게 하였다.

AANet: Adjacency auxiliary network for salient object detection

  • Li, Xialu;Cui, Ziguan;Gan, Zongliang;Tang, Guijin;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3729-3749
    • /
    • 2021
  • At present, deep convolution network-based salient object detection (SOD) has achieved impressive performance. However, it is still a challenging problem to make full use of the multi-scale information of the extracted features and which appropriate feature fusion method is adopted to process feature mapping. In this paper, we propose a new adjacency auxiliary network (AANet) based on multi-scale feature fusion for SOD. Firstly, we design the parallel connection feature enhancement module (PFEM) for each layer of feature extraction, which improves the feature density by connecting different dilated convolution branches in parallel, and add channel attention flow to fully extract the context information of features. Then the adjacent layer features with close degree of abstraction but different characteristic properties are fused through the adjacent auxiliary module (AAM) to eliminate the ambiguity and noise of the features. Besides, in order to refine the features effectively to get more accurate object boundaries, we design adjacency decoder (AAM_D) based on adjacency auxiliary module (AAM), which concatenates the features of adjacent layers, extracts their spatial attention, and then combines them with the output of AAM. The outputs of AAM_D features with semantic information and spatial detail obtained from each feature are used as salient prediction maps for multi-level feature joint supervising. Experiment results on six benchmark SOD datasets demonstrate that the proposed method outperforms similar previous methods.

Adaptive Thinning Algorithm for External Boundary Extraction

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • 제4권4호
    • /
    • pp.75-80
    • /
    • 2016
  • The process of extracting external boundary of an object is a very important process for recognizing an object in the image. The proposed extraction method consists of two processes: External Boundary Extraction and Thinning. In the first step, external boundary extraction process separates the region representing the object in the input image. Then, only the pixels adjacent to the background are selected among the pixels constituting the object to construct an outline of the object. The second step, thinning process, simplifies the outline of an object by eliminating unnecessary pixels by examining positions and interconnection relations between the pixels constituting the outline of the object obtained in the previous extraction process. As a result, the simplified external boundary of object results in a higher recognition rate in the next step, the object recognition process.