• Title/Summary/Keyword: Adipose-derived stromal cells

Search Result 33, Processing Time 0.034 seconds

Links between accelerated replicative cellular senescence and down-regulation of SPHK1 transcription

  • Kim, Min Kyung;Lee, Wooseong;Yoon, Gang-Ho;Chang, Eun-Ju;Choi, Sun-Cheol;Kim, Seong Who
    • BMB Reports
    • /
    • v.52 no.3
    • /
    • pp.220-225
    • /
    • 2019
  • We have identified a mechanism to diminish the proliferative capacity of cells during cell expansion using human adipose-derived stromal cells (hAD-SCs) as a model of replicative senescence. hAD-SCs of high-passage numbers exhibited a reduced proliferative capacity with accelerated cellular senescence. Levels of key bioactive sphingolipids were significantly increased in these senescent hAD-SCs. Notably, the transcription of sphingosine kinase 1 (SPHK1) was down-regulated in hAD-SCs at high-passage numbers. SPHK1 knockdown as well as inhibition of its enzymatic activity impeded the proliferation of hAD-SCs, with concomitant induction of cellular senescence and accumulation of sphingolipids, as seen in high-passage cells. SPHK1 knockdown-accelerated cellular senescence was attenuated by co-treatment with sphingosine-1-phosphate and an inhibitor of ceramide synthesis, fumonisin $B_1$, but not by treatment with either one alone. Together, these results suggest that transcriptional down-regulation of SPHK1 is a critical inducer of altered sphingolipid profiles and enhances replicative senescence during multiple rounds of cell division.

High-fat diet alters the thermogenic gene expression to β-agonists or 18-carbon fatty acids in adipocytes derived from the white and brown adipose tissue of mice

  • Seonjeong Park;Seung A Ock;Yun Jeong Park;Yoo-Hyun Lee;Chan Yoon Park;Sunhye Shin
    • Journal of Nutrition and Health
    • /
    • v.57 no.2
    • /
    • pp.171-184
    • /
    • 2024
  • Purpose: Although activating thermogenic adipocytes is a promising strategy to reduce the risk of obesity and related metabolic disorders, emerging evidence suggests that it is difficult to induce adipocyte thermogenesis in obesity. Therefore, this study aimed to investigate the regulation of adipocyte thermogenesis in diet-induced obesity. Methods: Adipose progenitor cells were isolated from the white and brown adipose tissues of control diet (CD) or high-fat diet (HFD) fed mice, and fully differentiated white and brown adipocytes were treated with β-agonists or 18-carbon fatty acids for β-adrenergic activation or peroxisome proliferator-activated receptor (PPAR) activation. Results: Compared to the CD-fed mice, the expression of uncoupling protein 1 (Ucp1) was lower in the white adipose tissue of the HFD-fed mice; however, this was not observed in the brown adipose tissue. The expression of peroxisome proliferator-activated receptor gamma (Pparg) was lower in the brown adipose progenitor cells isolated from HFD-fed mice than in those isolated from the CD-fed mice. Norepinephrine (NE) treatment exerted lesser effect on peroxisome proliferator-activated receptor-γ coactivator (Pgc1a) upregulation in white adipocytes derived from HFD-fed mice than those derived from CD-fed mice. Regardless which 18-carbon fatty acids were treated, the expression levels of thermogenic genes including Ucp1, Pgc1a, and positive regulatory domain zinc finger region protein 16 (Prdm16) were higher in the white adipocytes derived from HFD-fed mice. Oleic acid (OLA) and γ-linolenic acid (GLA) upregulated Pgc1a expression in white adipocytes derived from HFD-fed mice. Brown adipocytes derived from HFD-fed mice had higher expression levels of Pgc1a and Prdm16 compared to their counterparts. Conclusion: These results indicate that diet-induced obesity may downregulate brown adipogenesis and NE-induced thermogenesis in white adipocytes. Also, HFD feeding may induce thermogenic gene expression in white and brown primary adipocytes, and OLA and GLA could augment the expression levels.

The Effect of Repetitive Magnetic Stimulation in an SCI Rat Model with Stem Cell Transplantation (줄기세포를 이식한 척수손상 흰쥐에서 반복자기자극의 효과)

  • Bae, Young-Kyung;Park, Hea-Woon;Cho, Yun-Woo;Kim, Su-Jeong;Lee, Joon-Ha;Kwon, Jung-Gu;Ahn, Sang-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.1
    • /
    • pp.67-73
    • /
    • 2010
  • Purpose: We tested whether repetitive transcranial magnetic stimulation (rTMS) improved recovery following spinal cord injury (SCI) in rats with transplantation of adipose tissue-derived stromal cells (ATSCs). Methods: Twenty Sprague-Dawley rats (200-250 g, female) were used. Moderate spinal cord injury was induced at the T9 level by a New York University (NYU) impactor. The rat ATSCs (approximately $5{\times}10^5$ cells) were injected into the perilesional area at 9 days after SCI. Starting four days after transplantation, rTMS (25 Hz, 0.1 Tesla, pulse width=$370{\mu}s$, on/off time=3 sec/3 sec) was applied daily for 7 weeks. Functional recovery was assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale as well as pain responses for thermal and cold stimuli. Results: Both groups showed similar, gradual improvement of locomotor function. rTMS stimulation decreased thermal and cold hyperalgesia after 7 weeks, but sham stimulation did not. Conclusion: rTMS after transplantation of ATSCs in an SCI model may reduce thermal hyperalgesia and cold allodynia, and may be an adjuvant therapeutic tool for pain control after stem cell therapy in SCI.

Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

  • Lee, Jun Hee;Han, Yong-Seok;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.260-267
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.

Characterization of Human Thigh Adipose-derived Stem Cells (사람의 허벅지지방유래 줄기세포의 특성 분석)

  • Heo, Jin-Yeong;Yoon, Jin-Ah;Kang, Hyun-Mi;Park, Se-Ah;Kim, Hae-Kwon
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.233-241
    • /
    • 2010
  • Human adipose stem cells are an abundant, readily available population of multipotent progenitor cells that reside in adipose tissue and these cells have characteristics very similar to bone marrow mesenchymal stromal cells (BMMSCs). However, liposuction procedure, donor age, body mass index, and harvesting sites might generate differences in the initial cell population and the preparations are a heterogeneous mixture of precursors with different subsets. Therefore, in this study, we investigated the characteristics of human thigh adipose stem cells and the differentiation potential into mesodermal and endodermal lineage. Thigh adipose stem cells maintained fibroblast-like morphology similar to BM-MSCs and they underwent average 56.5 doublings and produced $5{\times}10^{22}$ cells. These cells expressed SCF, Oct4, nanog, vimentin, CK18, FGF5, NCAM, Pax6, BMP4, HNF4a, nestin, GATA4, HLA-ABC, and HLA-DR genes at p3 and they also expressed Oct4, Thy-1, FSP, vWF, vimentin, desmin, CK18, CD54, CD4, CD106, CD31, a-SMA, HLA-ABC proteins. Moreover, they could differentiate into mesodermal lineage cells such as adipocyte, osteoblast and chondrocyte. In addition, they also differentiated into insulin secreting cells in our culture condition. In conclusion, human thigh adipose stem cells retain proliferative potential and expression patterns similar to BM-MSCs and they also differentiate into various cell types. Thus, human thigh adipose stem cells might be useful alternative cell source for clinical application.

Adipose tissue-derived mesenchymal stem cells reduce endometriosis cellular proliferation through their anti-inflammatory effects

  • Meligy, Fatma Y.;Elgamal, Dalia A.;Abdelzaher, Lobna A.;Khashbah, Maha Y.;El-Mokhtar, Mohamed A.;Sayed, Ayat A.;Refaiy, Abeer M.;Othman, Essam R.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.322-336
    • /
    • 2021
  • Objective: Endometriosis is a chronic debilitating inflammatory condition characterized by the presence of endometrial tissues outside the uterine cavity. Pelvic soreness and infertility are the usual association. Due to the poor effectiveness of the hormone therapy and the high incidence of recurrence following surgical excision, there is no single effective option for management of endometriosis. Mesenchymal stem cells (MSCs) are multipotent stromal cells studied for their broad immunoregulatory and anti-inflammatory properties; however, their efficiency in endometriosis cases is still a controversial issue. Our study aim was to evaluate whether adipose tissue-derived MSCs (AD-MSCs) could help with endometriosis through their studied anti-inflammatory role. Methods: Female Wistar rats weighting 180 to 250 g were randomly divided into two groups: group 1, endometriosis group; established by transplanting autologous uterine tissue into rats' peritoneal cavities and group 2, stem cell treated group; treated with AD-MSCs on the 5th day after induction of endometriosis. The proliferative activity of the endometriosis lesions was evaluated through Ki67 staining. Quantitative estimation of interferon γ, tumor necrosis factor-α, interleukin (IL)-6, IL-1β, IL-10, and transforming growth factor β expression, as well as immunohistochemical detection of CD68 positive macrophages, were used to assess the inflammatory status. Results: The size and proliferative activity of endometriosis lesions were significantly reduced in the stem cell treated group. Stem cells efficiently mitigated endometriosis associated chronic inflammatory reactions estimated through reduction of CD68 positive macrophages and the expression of the proinflammatory cytokines. Conclusion: Stem cell therapy can be considered a novel remedy in endometriosis possibly through its anti-inflammatory and antiproliferative properties.

Cell-Assisted Lipotransfer for the Treatment of Parry-Romberg Syndrome

  • Castro-Govea, Yanko;De La Garza-Pineda, Oscar;Lara-Arias, Jorge;Chacon-Martinez, Hernan;Mecott-Rivera, Gabriel;Salazar-Lozano, Abel;Valdes-Flores, Everardo
    • Archives of Plastic Surgery
    • /
    • v.39 no.6
    • /
    • pp.659-662
    • /
    • 2012
  • Progressive facial hemiatrophy, also known as Parry-Romberg syndrome, is a progressive and self-limited deformation of the subcutaneous tissue volume on one side of the face that creates craniofacial asymmetry. We present the case of a patient with a five-year history of progressive right facial hemiatrophy, who underwent facial volumetric restoration using cell-assisted lipotransfer (CAL), which consists of an autologous fat graft enriched with adipose-derived stem cells (ASCs) extracted from the same patient. ASCs have the capacity to differentiate into adipocytes. They also promote angiogenesis, release angiogenic growth factors, and some can survive as stem cells. The use of autologous fat as a filler in soft tissue atrophy has been satisfactory in patients with mild and moderate Parry-Romberg syndrome. Currently, CAL has showed promising results in the long term by decreasing the rate of fat reabsorption. The permanence and stability of the graft in all the injected areas has showed that autologous fat grafts enriched with stem cells could be a promising technique for the correction of defects caused by this syndrome.

Effect of Stem Cell Transplantation on Pain Behavior and Locomotor Function in Spinal Cord Contusion Model

  • Park, Hea-Woon;Kim, Su-Jeong;Cho, Yun-Woo;Hwang, Se-Jin;Lee, Won-Yub;Ahn, Sang-Ho;Jang, Sung-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.3
    • /
    • pp.79-85
    • /
    • 2010
  • Purpose: Many trials for new therapeutic approaches such as stem cell-based transplantation have been conducted to improve the repair and regeneration of injured cord tissue and to restore functions following spinal cord injury (SCI) in animals and humans. Adipose tissue-derived stromal cells (ATSCs) have multi-lineage potential to differentiate into cells with neuron-like morphology. Most studies of stem cell transplantation therapy after SCI are focused on cellular regeneration and restoration of motor function, but not on unwanted effects after transplantation such as neuropathic pain. This study was focused on whether transplantation of ATSCs could facilitate or attenuate hindpaw pain responses to heat, cold and mechanical stimulation, as well as on improvement of locomotor function in a rat with SCI. Methods: A spinal cord injury rat model was produced using an NYU impactor by dropping a 10 g rod from a height of 25 mm on to the T9 segment. Human ATSCs (hATSCs; approximately $5{\times}10^5$ cells) or DMEM were injected into the perilesional area 9 days after the SCI. After transplantation, hindpaw withdrawal responses to heat, cold and mechanical allodynia were measured over 7 weeks. Motor recovery on the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and on the inclined plane test were also evaluated. Results: The present study demonstrated that increased hindpaw withdrawal responses to cold allodynia was observed in both groups after transplantation, but the development of cold-induced allodynia in the hATSC transplantation group was significantly larger than in the control group. The difference between the two groups in locomotor functional improvement after SCI was also significant. Conclusion: Careful consideration not only of optimal functional benefits but also of unintended side effects such as neuropathic pain is necessary before stem cell transplantation therapy after SCI.

Modulation of osteoblastic/odontoblastic differentiation of adult mesenchymal stem cells through gene introduction: a brief review

  • Kim, Ji-Youn;Kim, Myung-Rae;Kim, Sun-Jong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • Bone tissue engineering is one of the important therapeutic approaches to the regeneration of bones in the entire field of regeneration medicine. Mesenchymal stem cells (MSCs) are actively discussed as material for bone tissue engineering due to their ability to differentiate into autologous bone. MSCs are able to differentiate into different lineages: osteo/odontogenic, adipogenic, and neurogenic. The tissue of origin for MSCs defines them as bone marrow-derived stem cells, adipose tissue-derived stem cells, and, among many others, dental stem cells. According to the tissue of origin, DSCs are further stratified into dental pulp stem cells, periodontal ligament stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, and dental papilla cells. There are numerous in vitro/in vivo reports suggesting successful mineralization potential or osteo/odontogenic ability of MSCs. Still, there is further need for the optimization of MSCs-based tissue engineering methods, and the introduction of genes related to osteo/odontogenic differentiation into MSCs might aid in the process. In this review, articles that reported enhanced osteo/odontogenic differentiation with gene introduction into MSCs will be discussed to provide a background for successful bone tissue engineering using MSCs with artificially introduced genes.

Tracking Intravenous Adipose-Derived Mesenchymal Stem Cells in a Model of Elastase-Induced Emphysema

  • Kim, You-Sun;Kim, Ji-Young;Shin, Dong-Myung;Huh, Jin Won;Lee, Sei Won;Oh, Yeon-Mok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.3
    • /
    • pp.116-123
    • /
    • 2014
  • Background: Mesenchymal stem cells (MSCs) obtained from bone marrow or adipose tissue can successfully repair emphysematous animal lungs, which is a characteristic of chronic obstructive pulmonary disease. Here, we describe the cellular distribution of MSCs that were intravenously injected into mice with elastase-induced emphysema. The distributions were also compared to the distributions in control mice without emphysema. Methods: We used fluorescence optical imaging with quantum dots (QDs) to track intravenously injected MSCs. In addition, we used a human Alu sequence-based real-time polymerase chain reaction method to assess the lungs, liver, kidney, and spleen in mice with elastase-induced emphysema and control mice at 1, 4, 24, 72, and 168 hours after MSCs injection. Results: The injected MSCs were detected with QD fluorescence at 1- and 4-hour postinjection, and the human Alu sequence was detected at 1-, 4- and 24-hour postinjection in control mice (lungs only). Injected MSCs remained more in mice with elastase-induced emphysema at 1, 4, and 24 hours after MSCs injection than the control lungs without emphysema. Conclusion: In conclusion, our results show that injected MSCs were observed at 1 and 4 hours post injection and more MSCs remain in lungs with emphysema.