• Title/Summary/Keyword: Adipose tissue growth

Search Result 103, Processing Time 0.026 seconds

THE EFFECT OF GROWTH FACTORS ON OSTEOGENIC DIFFERENTIATION OF ADIPOSE TISSUE-DERIVED STROMAL CELLS (지방기질유래 줄기세포의 골 분화 시 성장인자의 효과)

  • Kim, Uk-Kyu;Choi, Yeon-Sik;Jung, Jin-Sup
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.4
    • /
    • pp.327-333
    • /
    • 2006
  • Future cell-based therapies such as tissue engineering will benefit from a source of autogenous pluripotent stem cells. There are embryonic stem cells (ESC) and autologous adult stem cells, two general types of stem cells potentilally useful for these applications. But practical use of ESC is limited due to potential problems of cell regulation and ethical considerations. To get bone marrow stem cells is relatively burden to patients because of pain, anesthesia requirement. The ideal stem cells are required of such as the following advantages: easy to obtain, minimal patient discomfort and a capability of yielding enough cell numbers. Adipose autologus tissue taken from intraoral fatty pad or abdomen may represent such a source. Our study designed to demonstrate the ability of human adipose tissue-derived stromal cells (hATSC) from human abdominal adipose tissue diffentiating into osteocyte and adipocyte under culture in vitro conditions. As a result of experiment, we identified stromal cell derived adipose tissue has the multilineage potentiality under appropriate culture conditions. And the adipose stromal cells expressed several mesenchymal stem cell related antigen (CD29, CD44) reactions. Secondary, we compared the culture results of a group of hATSC stimulated with TGF-${\beta}$1, bFGF with a hATSC group without growth factors to confirm whether cytokines have a important role of the proliferation in osteogenic differentiation. The role of cytokines such as TGF-${\beta}$1, bFGF increased hATSC's osteogenic differentiation especially when TGF-${\beta}$1 and bFGF were used together. These results suggest that adipose stromal cells with growth factors could be efficiently available for cell-based bone regeneration.

Interaction of Bovine Growth Hormone with Buffalo Adipose Tissue and Identification of Signaling Molecules in Its Action

  • Sodhi, R.;Rajput, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1030-1038
    • /
    • 2007
  • Results on localization of growth hormone receptor (GHR), interaction of growth hormone (GH) with receptor in buffalo adipose tissue and identification of activated signaling molecules in the action of GH are presented. Bovine GH (bGH) was labeled with fluorescein or biotin. Fluorescein-labelled bGH was used for localization of GHRs in buffalo adipocytes. The receptors were present on the cell surface. The affinity of binding of GH to its receptor was determined by designing an experiment in which buffalo adipose tissue explants, biotinylated GH and streptavidin-peroxidase conjugate were employed. The affinity constant was calculated to be $2{\times}10^8M^{-1}$. The receptor density on adipose tissue was found to be 1 femto mole per mg of tissue. Signalling molecules generated in the action of GH were tentatively identified by employing Western blot and enhanced chemiluminescence techniques using anti-phosphotyrosine antibody. Based on molecular weights of proteins reactive to anti-phosphotyrosine antibody, three signaling molecules viz. insulin receptor substrate, Janus activated kinase (Jak) and mitogen activated protein were tentatively identified. These signaling molecules appeared in a time (incubation time of explants with growth hormone) dependent way. The activation of Jak2 was confirmed by employing anti-Jak2 antibody in a Western blot. The activation of Jak2 occurred during 5 min incubation of buffalo adipose tissue explants with GH and incubation for an additional period, viz. 30 min. or 60 min., resulted in a drastic reduction in activation. The results suggest that Jak2 activation is an early event in the action of GH in buffalo adipose tissue.

Cellularity of Adipose Tissue Obtained from Different Sex and Growth Stages of Hanwoo Cattle and Sheep

  • Lee, H.J.;Lee, S.C.;Kim, D.W.;Park, J.G.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.2
    • /
    • pp.155-160
    • /
    • 2000
  • In order to understand the effects of sex or age on cellular characteristics of adipocytes from Hanwoo and sheep, samples were obtained from omental, subcutaneous, intermuscular and intramuscular adipose tissue depots of bulls, steers, heifers and cows in Hanwoo, and perirenal, omental and subcutaneous adipose tissues of fetal lambs, suckling lambs and wethers in sheep. In case of Hanwoo, mean diameter, surface area and volume of adipocytes from each depot were obtained by multisizer II (Coulter Co., UK). Osmium-fixed adipocytes were sized and counted using $560{\mu}m$ aperture. For samples obtained from sheep, cellularity was measured by using microscope and MCV program of Texas Instrument. Bulls had less subcutaneous and kidney fat than steers even though their slaughter and carcass weight were heavier. The amounts of fat from cows were greater in subcutaneous, kidney and internal organs than heifers. Steers had larger adipocytes in subcutaneous, intermuscular and intramuscular adipose tissues than bulls, although the differences were significant only for the subcutaneous adipose tissue depots. Adipocytes appeared to be largest in omental and smallest in intramuscular adipose tissue, although there were no significant differences among tissues. In a comparison of heifers and cows, significant site effects (p<0.05) were shown in adipocyte diameter, surface area and volume, and adipocyte appeared to be largest in omental tissue. Statistical difference (p<0.05) was only shown in cell volume of intramuscular tissue which was higher in cow than heifer. Intramuscular adipose tissue tended to have relatively greater numbers of cells per gram tissue and reflect lesser maturity of intramuscular adipose tissue relative to other adipose tissues. In sheep, regardless of adipose tissue depots, wethers had the greater adipocyte diameters than those at any other growth stage of sheep. Within adipose depots, the ranking of cell size was the greatest in the omental tissue of wether and the lowest in the renal and subcutaneous adipose tissue depots of fetal lamb. The cell size of adipocyte became larger with age, especially from fetal to suckling lamb due to a rapid hypertrophy of both perirenal and subcutaneous adipocytes during the suckling period.

The Role of Angiogenesis in Obesity (비만에서의 혈관신생의 역할)

  • Yoon, Michung
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.573-587
    • /
    • 2014
  • Angiogenesis, the formation of new capillary blood vessels, is a tightly regulated process. Under normal physiological conditions, angiogenesis only takes place during embryonic development, wound healing, and female menstruation. Dysregulation of angiogenesis is associated with many diseases, such as cancer, rheumatoid arthritis, psoriasis, and proliferative retinopathy. The growth and expansion of adipose tissue require the formation of new blood vessels. Adipose tissue is probably the most highly vascularized tissue in the body, as each adipocyte is surrounded by capillaries, and the angiogenic vessels supply nutrients and oxygen to adipocytes. Accumulating evidence shows that capillary endothelial cells communicate with adipocytes via paracrine signaling pathways, extracellular components, and direct cell-cell interactions. Activated adipocytes produce multiple angiogenic factors, including VEGF, FGF-2, leptin, and HGF, which either alone or cooperatively stimulate the expansion and metabolism of adipose tissue by increasing adipose tissue vasculature. Recently, it was demonstrated that antiangiogenic herbal Ob-X extracts and Korean red ginseng extracts reduce adipose tissue mass and suppress obesity by inhibiting angiogenesis in obese mice. Thus, angiogenesis inhibitors provide a promising therapeutic approach for controlling human obesity and related disorders.

Possibility of Undifferentiated Human Thigh Adipose Stem Cells Differentiating into Functional Hepatocytes

  • Lee, Jong Hoon;Lee, Kuk Han;Kim, Min Ho;Kim, Jun Pyo;Lee, Seung Jae;Yoon, Jinah
    • Archives of Plastic Surgery
    • /
    • v.39 no.6
    • /
    • pp.593-599
    • /
    • 2012
  • Background This study aimed to investigate the possibility of isolating mesenchymal stem cells (MSCs) from human thigh adipose tissue and the ability of human thigh adipose stem cells (HTASCs) to differentiate into hepatocytes. Methods The adipose-derived stem cells (ADSCs) were isolated from thigh adipose tissue. Growth factors, cytokines, and hormones were added to the collagen coated dishes to induce the undifferentiated HTASCs to differentiate into hepatocyte-like cells. To confirm the experimental results, the expression of hepatocyte-specific markers on undifferentiated and differentiated HTASCs was analyzed using reverse transcription polymerase chain reaction and immunocytochemical staining. Differentiation efficiency was evaluated using functional tests such as periodic acid schiff (PAS) staining and detection of the albumin secretion level using enzyme-linked immunosorbent assay (ELISA). Results The majority of the undifferentiated HTASCs were changed into a more polygonal shape showing tight interactions between the cells. The differentiated HTASCs up-regulated mRNA of hepatocyte markers. Immunocytochemical analysis showed that they were intensely stained with anti-albumin antibody compared with undifferentiated HTASCs. PAS staining showed that HTASCs submitted to the hepatocyte differentiation protocol were able to more specifically store glycogen than undifferentiated HTASCs, displaying a purple color in the cytoplasm of the differentiated HTASCs. ELISA analyses showed that differentiated HTASCs could secrete albumin, which is one of the hepatocyte markers. Conclusions MSCs were islolated from human thigh adipose tissue differentiate to heapatocytes. The source of ADSCs is not only abundant abdominal adipose tissue, but also thigh adipose tissue for cell therapy in liver regeneration and tissue regeneration.

Effect of Dietary Conjugated Linoleic Acid (CLA) on Abdominal Fat Deposition in Yellow-feather Broiler Chickens and Its Possible Mechanism

  • Zhou, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.12
    • /
    • pp.1760-1765
    • /
    • 2008
  • A total of 60 one-day-old Yellow-feather broiler chickens were allotted into treatment and control groups. The treatment group was fed with the diet supplemented with 3% conjugated linoleic acid (CLA) for 48 d, while control group was fed with the diet supplemented with 3% rapeseed oil. Chickens were slaughtered in each group at the age of 49 d, and the blood and the abdominal adipose tissue were sampled. Serum cLeptin and serum cAdiponectin were measured by ELISA. The total RNA was extracted from adipose tissue to measure the abundance of the chicken growth hormone receptor (cGHR), insulin-like growth factor 1 (cIGF-1), insulin-like growth factor I receptor (cIGF-IR), peroxisome proliferator-activated receptor gamma ($cPPAR{\gamma}$), cAdiponectin and cAdipoIR mRNA by RT-PCR using ${\beta}$-actin as an internal standard. Results showed that the CLA decreased the abdominal fat index by 20.93% (p<0.05). The level of serum cLeptin but not serum cAdiponectin was significantly increased by CLA treatment (p<0.05). CLA down-regulated the relative abundance of cGH-R mRNA and $cPPAR{\gamma}$ mRNA in abdominal adipose tissue by 24.74% (p<0.05) and 66.52% (p<0.01) respectively. However, no differences were found between CLA treatment group and control group (p>0.05) in the relative abundance of cIGF-1, cIGF-IR, cAdiponectin, and cAdipoIR mRNA in abdominal adipose tissue. The data suggested that CLA inhibited abdominal fat deposition in broiler chicken may be determined by decreasing the GHR available for GH, and by inhibiting the differentiation of preadipocytes via down-regulation of $PPAR{\gamma}$, but independent of IGF and (or) GH-IGF pathway or adiponectin action.

Shrimp By-product Feeding and Growth Performance of Growing Pigs Kept on Small Holdings in Central Vietnam

  • Nguyen, Linh Q.;Everts, Henk;Beynen, Anton C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.1025-1029
    • /
    • 2003
  • The effect studied was that of the feeding of shrimp by-product meal, as a source of eicosapentaenoic and docosahexaenoic acid, on growth performance and fatty acid composition of adipose tissue in growing pigs kept on small holdings in Central Vietnam. Shrimp by-product meal was exchanged with ruminant meal so that the diets contained either 0, 10 or 20% shrimp byproduct meal in the dry matter. The diets were fed on 6 different small-holder farms. The farmers fed a base diet according to their personal choice, but were instructed as to the use of shrimp by-product and ruminant meal. The diets were fed to the pigs from 70 to 126 days of age. There were three animals per treatment group per farm. The diets without and with 20% shrimp by-product meal on average contained 0.01 and 0.14 g docosahexaenoic acid/MJ of metabolisable energy (ME). Due to the higher contents of ash and crude fiber, the shrimp by-product meal containing diets had lower energy densities than the control diets. Eicosapentaenoic acid was not detectable in adipose tissue; the content of docosahexaenoic acid was generally increased after consumption of shrimp by-product meal. In spite of the concurrent high intakes of ash and crude fiber, the feeding of shrimp by-product meal had a general stimulatory effect on growth performance of the growing pigs. The intake of docosahexaenoic acid or its content in adipose tissue was not related with average daily gain. It is suggested that shrimp by-product meal may contain an unknown growth enhancing factor.

Inhibitory effects of Doenjang, Korean traditional fermented soybean paste, on oxidative stress and inflammation in adipose tissue of mice fed a high-fat diet

  • Nam, Ye Rim;Won, Sae Bom;Chung, Young-Shin;Kwak, Chung Shil;Kwon, Young Hye
    • Nutrition Research and Practice
    • /
    • v.9 no.3
    • /
    • pp.235-241
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Doenjang, Korean traditional fermented soybean paste has been reported to have an anti-obesity effect. Because adipose tissue is considered a major source of inflammatory signals, we investigated the protective effects of Doenjang and steamed soybean on oxidative stress and inflammation in adipose tissue of diet-induced obese mice. MATERIALS/METHODS: Male C57BL/6J mice were fed a low fat diet (LF), a high-fat diet (HF), or a high-fat containing Doenjang diet (DJ) or a high-fat containing steamed soybean diet (SS) for 11 weeks. RESULTS: Mice fed a DJ diet showed significantly lower body and adipose tissue weights than those in the HF group. Although no significant differences in adipocyte size and number were observed among the HF diet-fed groups, consumption of Doenjang alleviated the incidence of crown-like structures in adipose tissue. Consistently, we observed significantly reduced mRNA levels of oxidative stress markers (heme oxygenase-1 and $p40^{phox}$), pro-inflammatory adipokines (tumor necrosis factor alpha and macrophage chemoattractant protein-1), macrophage markers (CD68 and CD11c), and a fibrosis marker (transforming growth factor beta 1) by Doenjang consumption. Gene expression of anti-inflammatory adipokine, adiponectin was significantly induced in the DJ group and the SS group compared to the HF group. The anti-oxidative stress and anti-inflammatory effects observed in mice fed an SS diet were not as effective as those in mice fed a DJ diet, suggesting that the bioactive compounds produced during fermentation and aging may be involved in the observed health-beneficial effects of Doenjang. CONCLUSIONS: Doenjang alleviated oxidative stress and restored the dysregulated expression of adipokine genes caused by excess adiposity. Therefore, Doenjang may ameliorate systemic inflammation and oxidative stress in obesity via inhibition of inflammatory signals of adipose tissue.

Effect of Phorbol 12-Myristate 13-Acetate on the Differentiation of Adipose-Derived Stromal Cells from Different Subcutaneous Adipose Tissue Depots

  • Song, Jennifer K.;Lee, Chang Hoon;Hwang, So-Min;Joo, Bo Sun;Lee, Sun Young;Jung, Jin Sup
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.4
    • /
    • pp.289-296
    • /
    • 2014
  • Human adipose-tissue-derived stromal cells (hADSCs) are abundant in adipose tissue and can differentiate into multi-lineage cell types, including adipocytes, osteoblasts, and chondrocytes. In order to define the optimal harvest site of adipose tissue harvest site, we solated hADSCs from different subcutaneous sites (upper abdomen, lower abdomen, and thigh) and compared their proliferation and potential to differentiate into adipocytes and osteoblasts. In addition, this study examined the effect of phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, on proliferation and differentiation of hADSCs to adipocytes or osteoblasts. hADSCs isolated from different subcutaneous depots have a similar growth rate. Fluorescence-activated cell sorting (FACS) analysis showed that the expression levels of CD73 and CD90 were similar between hADSCs from abdomen and thigh regions. However, the expression of CD105 was lower in hADSCs from the thigh than in those from the abdomen. Although the adipogenic differentiation potential of hADSCs from both tissue regions was similar, the osteogenic differentiation potential of hADSCs from the thigh was greater than that of hADSCs from the abdomen. Phorbol 12-myristate 13-acetate (PMA) treatment increased osteogenic differentiation and suppressed adipogenic differentiation of all hADSCs without affecting their growth rate and the treatment of Go6983, a general inhibitor of protein kinase C (PKC) blocked the PMA effect. These findings indicate that the thigh region might be a suitable source of hADSCs for bone regeneration and that the PKC signaling pathway may be involved in the adipogenic and osteogenic differentiation of hADSCs.

Use of Human Adipose Tissue as a Source of Endothelial Cells (혈관내피세포 채취의 원천으로 인간 지방조직의 활용)

  • Park, Bong-Wook;Hah, Young-Sool;Kim, Jin-Hyun;Cho, Hee-Young;Jung, Myeong-Hee;Kim, Deok-Ryong;Kim, Uk-Kyu;Kim, Jong-Ryoul;Jang, Jung-Hui;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.4
    • /
    • pp.299-305
    • /
    • 2010
  • Purpose: Adipose tissue is located beneath the skin, around internal organs, and in the bone marrow in humans. Its main role is to store energy in the form of fat, although it also cushions and insulates the body. Adipose tissue also has the ability to dynamically expand and shrink throughout the life of an adult. Recently, it has been shown that adipose tissue contains a population of adult multipotent mesenchymal stem cells and endothelial progenitor cells that, in cell culture conditions, have extensive proliferative capacity and are able to differentiate into several lineages, including, osteogenic, chondrogenic, endothelial cells, and myogenic lineages. Materials and Methods: This study focused on endothelial cell culture from the adipose tissue. Adipose tissues were harvested from buccal fat pad during bilateral sagittal split ramus osteotomy for surgical correction of mandibular prognathism. The tissues were treated with 0.075% type I collagenase. The samples were neutralized with DMEM/and centrifuged for 10 min at 2,400 rpm. The pellet was treated with 3 volume of RBC lysis buffer and filtered through a 100 ${\mu}m$ nylon cell strainer. The filtered cells were centrifuged for 10 min at 2,400 rpm. The cells were further cultured in the endothelial cell culture medium (EGM-2, Cambrex, Walkersville, Md., USA) supplemented with 10% fetal bovine serum, human EGF, human VEGF, human insulin-like growth factor-1, human FGF-$\beta$, heparin, ascorbic acid and hydrocortisone at a density of $1{\times}10^5$ cells/well in a 24-well plate. Low positivity of endothelial cell markers, such as CD31 and CD146, was observed during early passage of cells. Results: Increase of CD146 positivity was observed in passage 5 to 7 adipose tissue-derived cells. However, CD44, representative mesenchymal stem cell marker, was also strongly expressed. CD146 sorted adipose tissue-derived cells was cultured using immuno-magnetic beads. Magnetic labeling with 100 ${\mu}l$ microbeads per 108 cells was performed for 30 minutes at $4^{\circ}C$ a using CD146 direct cell isolation kit. Magnetic separation was carried out and a separator under a biological hood. Aliquous of CD146+ sorted cells were evaluated for purity by flow cytometry. Sorted cells were 96.04% positivity for CD146. And then tube formation was examined. These CD146 sorted adipose tissue-derived cells formed tube-like structures on Matrigel. Conclusion: These results suggest that adipose tissue-derived cells are endothelial cells. With the fabrication of the vascularized scaffold construct, novel approaches could be developed to enhance the engineered scaffold by the addition of adipose tissue-derived endothelial cells and periosteal-derived osteoblastic cells to promote bone growth.