• 제목/요약/키워드: Adipose stem cell

검색결과 141건 처리시간 0.029초

Membrane Free Stem Cell Extract from Adipose Tissue Enhances Glucose Uptake in 3T3-L1 Cells (무막줄기세포추출물의 3T3-L1 세포에서 포도당 흡수 촉진 효과)

  • Kim, Ji Hyun;Kim, Min Jeong;Park, Hye Sook;Kim, Young Sil;Cho, Eun Ju
    • Journal of Korean Medicine for Obesity Research
    • /
    • 제19권2호
    • /
    • pp.89-96
    • /
    • 2019
  • Objectives: We investigated whether membrane free stem cell extract from adipose tissue (MFSCE) has anti-diabetic effect. Methods: To determine glucose uptake effect of MFSCE, we carried out glucose uptake assay in 3T3-L1 adipocytes. The regulatory mechanisms of MFSCE on glucose uptake were examined by Western blot analysis. Results: When MFSCE was treated to adipocytes at the concentration of 0.5, 1, 2.5, and 5 ㎍/mL, 2-deoxyglucose-6-phosphate uptake was elevated approximately 1.8-fold compared to cells not treated with MFSCE. It indicated that MFSCE enhances glucose uptake in 3T3-L1 adipocytes. In addition, MFSCE reduced phosphorylation of insulin receptor substrate-1 at serine 307 and induced Akt and glucose transporter 4 protein expressions that were related to insulin signaling. Furthermore, MFSCE regulated adenosine monophosphate-activated protein kinase (AMPK) pathway by increases of increase phosphorylation of AMPK and acetyl-CoA carboxylase that were related to AMPK pathway. Conclusions: These results indicated that MFSCE promotes glucose uptake via modulation of insulin signaling and AMPK pathway. Therefore, MFSCE could be a promising agent for treatment of diabetes mellitus.

The Efficacy and Safety of Platelet-Rich Plasma and Adipose-Derived Stem Cells: An Update

  • Choi, Jaehoon;Minn, Kyung Won;Chang, Hak
    • Archives of Plastic Surgery
    • /
    • 제39권6호
    • /
    • pp.585-592
    • /
    • 2012
  • During the past decade, many studies using platelet-rich plasma (PRP) or adipose-derived stem cells (ASCs) have been conducted in various medical fields, from cardiovascular research to applications for corneal diseases. Nonetheless, there are several limitations of practical applications of PRP and ASCs. Most reports of PRP are anecdotal and few include controls to determine the specific role of PRP. There is little consensus regarding PRP production and characterization. Some have reported the development of an antibody to bovine thrombin, which was the initiator of platelet activation. In the case of ASCs, good manufacturing practices are needed for the production of clinical-grade human stem cells, and in vitro expansion of ASCs requires approval of the Korea Food and Drug Administration, such that considerable expense and time are required. Additionally, some have reported that ASCs could have a potential risk of transformation to malignant cells. Therefore, the authors tried to investigate the latest research on the efficacy and safety of PRP and ASCs and report on the current state and regulation of these stem cell-based therapies.

Cell-Assisted Lipotransfer for the Treatment of Parry-Romberg Syndrome

  • Castro-Govea, Yanko;De La Garza-Pineda, Oscar;Lara-Arias, Jorge;Chacon-Martinez, Hernan;Mecott-Rivera, Gabriel;Salazar-Lozano, Abel;Valdes-Flores, Everardo
    • Archives of Plastic Surgery
    • /
    • 제39권6호
    • /
    • pp.659-662
    • /
    • 2012
  • Progressive facial hemiatrophy, also known as Parry-Romberg syndrome, is a progressive and self-limited deformation of the subcutaneous tissue volume on one side of the face that creates craniofacial asymmetry. We present the case of a patient with a five-year history of progressive right facial hemiatrophy, who underwent facial volumetric restoration using cell-assisted lipotransfer (CAL), which consists of an autologous fat graft enriched with adipose-derived stem cells (ASCs) extracted from the same patient. ASCs have the capacity to differentiate into adipocytes. They also promote angiogenesis, release angiogenic growth factors, and some can survive as stem cells. The use of autologous fat as a filler in soft tissue atrophy has been satisfactory in patients with mild and moderate Parry-Romberg syndrome. Currently, CAL has showed promising results in the long term by decreasing the rate of fat reabsorption. The permanence and stability of the graft in all the injected areas has showed that autologous fat grafts enriched with stem cells could be a promising technique for the correction of defects caused by this syndrome.

Therapeutic Effect of Three-Dimensional Cultured Adipose-Derived Stem Cell-Conditioned Medium in Renal Ischemia-Reperfusion Injury

  • Yu Seon Kim;Joomin Aum;Bo Hyun Kim;Myoung Jin Jang;Jungyo Suh;Nayoung Suh;Dalsan You
    • International Journal of Stem Cells
    • /
    • 제16권2호
    • /
    • pp.168-179
    • /
    • 2023
  • Background and Objectives: We evaluated the effect of adipose-derived stem cell-derived conditioned medium (ADSC-CM) on the renal function of rats with renal ischemia-reperfusion injury (IRI)-induced acute kidney injury. Methods and Results: Forty male Sprague-Dawley rats were randomly divided into four groups: sham, nephrectomy control, IRI control, ADSC-CM. The ADSC-CM was prepared using the three-dimensional spheroid culture system and injected into renal parenchyme. The renal function of the rats was evaluated 28 days before and 1, 2, 3, 4, 7, and 14 days after surgical procedures. The rats were sacrificed 14 days after surgical procedures, and kidney tissues were collected for histological examination. The renal parenchymal injection of ADSC-CM significantly reduced the serum blood urea nitrogen and creatinine levels compared with the IRI control group on days 1, 2, 3, and 4 after IRI. The renal parenchymal injection of ADSC-CM significantly increased the level of creatinine clearance compared with the IRI control group 1 day after IRI. Collagen content was significantly lower in the ADSC-CM group than in the IRI control group in the cortex and medulla. Apoptosis was significantly decreased, and proliferation was significantly increased in the ADSC-CM group compared to the IRI control group in the cortex and medulla. The expressions of anti-oxidative makers were higher in the ADSC-CM group than in the IRI control group in the cortex and medulla. Conclusions: The renal function was effectively rescued through the renal parenchymal injection of ADSC-CM prepared using a three-dimensional spheroid culture system.

Stem Cells in Plastic Surgery: A Review of Current Clinical and Translational Applications

  • Salibian, Ara A.;Widgerow, Alan D.;Abrouk, Michael;Evans, Gregory R.D.
    • Archives of Plastic Surgery
    • /
    • 제40권6호
    • /
    • pp.666-675
    • /
    • 2013
  • Background Stem cells are a unique cell population characterized by self-renewal and cellular differentiation capabilities. These characteristics, among other traits, make them an attractive option for regenerative treatments of tissues defects and for aesthetic procedures in plastic surgery. As research regarding the isolation, culture and behavior of stem cells has progressed, stem cells, particularly adult stem cells, have shown promising results in both translational and clinical applications. Methods The purpose of this review is to evaluate the applications of stem cells in the plastic surgery literature, with particular focus on the advances and limitations of current stem cell therapies. Different key areas amenable to stem cell therapy are addressed in the literature review; these include regeneration of soft tissue, bone, cartilage, and peripheral nerves, as well as wound healing and skin aging. Results The reviewed studies demonstrate promising results, with favorable outcomes and minimal complications in the cited cases. In particular, adipose tissue derived stem cell (ADSC) transplants appear to provide effective treatment options for bony and soft tissue defects, and non-healing wounds. ADSCs have also been shown to be useful in aesthetic surgery. Conclusions Further studies involving both the basic and clinical science aspects of stem cell therapies are warranted. In particular, the mechanism of action of stem cells, their interactions with the surrounding microenvironment and their long-term fate require further elucidation. Larger randomized trials are also necessary to demonstrate the continued safety of transplanted stem cells as well as the efficacy of cellular therapies in comparison to the current standards of care.

Melatonin Protects Human Adipose-Derived Stem Cells from Oxidative Stress and Cell Death

  • Tan, Shaun S.;Han, Xiaolian;Sivakumaran, Priyadharshini;Lim, Shiang Y.;Morrison, Wayne A.
    • Archives of Plastic Surgery
    • /
    • 제43권3호
    • /
    • pp.237-241
    • /
    • 2016
  • Background Adipose-derived stem cells (ASCs) have applications in regenerative medicine based on their therapeutic potential to repair and regenerate diseased and damaged tissue. They are commonly subject to oxidative stress during harvest and transplantation, which has detrimental effects on their subsequent viability. By functioning as an antioxidant against free radicals, melatonin may exert cytoprotective effects on ASCs. Methods We cultured human ASCs in the presence of varying dosages of hydrogen peroxide and/or melatonin for a period of 3 hours. Cell viability and apoptosis were determined with propidium iodide and Hoechst 33342 staining under fluorescence microscopy. Results Hydrogen peroxide (1-2.5 mM) treatment resulted in an incremental increase in cell death. 2 mM hydrogen peroxide was thereafter selected as the dose for co-treatment with melatonin. Melatonin alone had no adverse effects on ASCs. Co-treatment of ASCs with melatonin in the presence of hydrogen peroxide protected ASCs from cell death in a dose-dependent manner, and afforded maximal protection at $100{\mu}M$ (n=4, one-way analysis of variance P<0.001). Melatonin co-treated ASCs displayed significantly fewer apoptotic cells, as demonstrated by condensed and fragmented nuclei under fluorescence microscopy. Conclusions Melatonin possesses cytoprotective properties against oxidative stress in human ASCs and might be a useful adjunct in fat grafting and cell-assisted lipotransfer.

Use of Human Adipose Tissue as a Source of Endothelial Cells (혈관내피세포 채취의 원천으로 인간 지방조직의 활용)

  • Park, Bong-Wook;Hah, Young-Sool;Kim, Jin-Hyun;Cho, Hee-Young;Jung, Myeong-Hee;Kim, Deok-Ryong;Kim, Uk-Kyu;Kim, Jong-Ryoul;Jang, Jung-Hui;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제32권4호
    • /
    • pp.299-305
    • /
    • 2010
  • Purpose: Adipose tissue is located beneath the skin, around internal organs, and in the bone marrow in humans. Its main role is to store energy in the form of fat, although it also cushions and insulates the body. Adipose tissue also has the ability to dynamically expand and shrink throughout the life of an adult. Recently, it has been shown that adipose tissue contains a population of adult multipotent mesenchymal stem cells and endothelial progenitor cells that, in cell culture conditions, have extensive proliferative capacity and are able to differentiate into several lineages, including, osteogenic, chondrogenic, endothelial cells, and myogenic lineages. Materials and Methods: This study focused on endothelial cell culture from the adipose tissue. Adipose tissues were harvested from buccal fat pad during bilateral sagittal split ramus osteotomy for surgical correction of mandibular prognathism. The tissues were treated with 0.075% type I collagenase. The samples were neutralized with DMEM/and centrifuged for 10 min at 2,400 rpm. The pellet was treated with 3 volume of RBC lysis buffer and filtered through a 100 ${\mu}m$ nylon cell strainer. The filtered cells were centrifuged for 10 min at 2,400 rpm. The cells were further cultured in the endothelial cell culture medium (EGM-2, Cambrex, Walkersville, Md., USA) supplemented with 10% fetal bovine serum, human EGF, human VEGF, human insulin-like growth factor-1, human FGF-$\beta$, heparin, ascorbic acid and hydrocortisone at a density of $1{\times}10^5$ cells/well in a 24-well plate. Low positivity of endothelial cell markers, such as CD31 and CD146, was observed during early passage of cells. Results: Increase of CD146 positivity was observed in passage 5 to 7 adipose tissue-derived cells. However, CD44, representative mesenchymal stem cell marker, was also strongly expressed. CD146 sorted adipose tissue-derived cells was cultured using immuno-magnetic beads. Magnetic labeling with 100 ${\mu}l$ microbeads per 108 cells was performed for 30 minutes at $4^{\circ}C$ a using CD146 direct cell isolation kit. Magnetic separation was carried out and a separator under a biological hood. Aliquous of CD146+ sorted cells were evaluated for purity by flow cytometry. Sorted cells were 96.04% positivity for CD146. And then tube formation was examined. These CD146 sorted adipose tissue-derived cells formed tube-like structures on Matrigel. Conclusion: These results suggest that adipose tissue-derived cells are endothelial cells. With the fabrication of the vascularized scaffold construct, novel approaches could be developed to enhance the engineered scaffold by the addition of adipose tissue-derived endothelial cells and periosteal-derived osteoblastic cells to promote bone growth.

Acceleration of Wound Healing Using Adipose-derived Stem Cell Therapy with Platelet Concentrates: Plateletrich Plasma (PRP) vs. Platelet-rich Fibrin (PRF) (혈소판 농축재제를 이용한 창상치유의 촉진)

  • Hahn, Hyung-Min;Jeon, Yeo-Reum;Rha, Dong-Kyun;Lew, Dae-Hyun
    • Archives of Plastic Surgery
    • /
    • 제38권4호
    • /
    • pp.345-350
    • /
    • 2011
  • Purpose: Although platelet-rich plasma (PRP) potentiate the wound healing activity of adipose-derived stem cells (ADSCs), its effect cannot be sustained for a prolonged period of time due to short duration of action. This led us to design and produce platelet-rich fibrin (PRF), in an effort to develop a tool which lasts longer, and apply it on wound healing. Methods: Two symmetrical skin defects were made on the back of seven nude mice. ADSCs were applied to each wound, combined with either PRP or PRF. The wound area was measured over 14 days. By day 16, the wound was harvested and histologic analysis was performed including counting of the blood vessel. Results: The healing rate was more accelerated in PRP group in the first 5 days (p<0.05). However, PRF group surpassed PRP group after 6 days (p<0.05). The average number of blood vessels observed in the PRF group was $6.53{\pm}0.51$, compared with $5.68{\pm}0.71$ for the PRP group. Conclusion: PRF exerts a slow yet pervasive influence over the two-week course of the wound healing process. Thus, PRF is probably more beneficial for promoting the activity of ADSCs for a sustained period of time.

Effect of Low Intensity Pulsed Ultrasound with Adipose-Derived Stem Cells on Bone Healing around a Titanium Implant in Tibia of Osteoporosis-Induced Rats (골다공증 유도 백서 경골에 티타늄 임플랜트 매식 시 지방조직유래 줄기세포 주입과 저출력 초음파 적용이 골치유에 미치는 영향)

  • Lee, Kwang-Ho;Choi, Yeon-Sik;Shin, Sang-Hun;Chung, In-Kyo;Kim, Gyoo-Cheon;Kim, Cheol-Hun;Kim, Uk-Kyu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제33권3호
    • /
    • pp.199-209
    • /
    • 2011
  • Purpose: Osteoporosis, is a major health problem for the elderly and post-menopausal women and shown to alter the properties of bone as well as impair bone healing around titanium implants in both human and animals. The objective of this study was to examine the effect of LIPUS with adipose-derived stem cells on the healing process around a titanium implant in rats with osteoporosis. Methods: Sixteen osteoporosis-induced rats were divided into two groups: an adipose-derived stem cell injected with Low Intensity Pulsed Ultrasound (LIPUS) application group and a control group. Titanium screw implants (diameter, 2.0 mm: length, 3.5 mm, Cowell Medi, Korea) were placed into both tibia of 16 rats, on 8 rats as the control group and the other 8 rats as the experimental group. Rats were sacrificed at different intervals from 1, 2, 4 and 8 weeks after implantation for histopathologic and immunohistochemical analyses. Results: Histopathological analysis revealed newly formed bone in experimental group earlier than that in control group. Especially at 1 week after implantation, more amounts of new bone matrix and collagen around the implant in the experimental group were seen compared with the control group. Immunohistochemical analysis showed that the levels of osteoprotegerin (OPG) expression in the experimental group were increased at early stages compared with that of control group until 2 weeks after implantation. But after 2 weeks, the expression level of OPG similar in both groups. The expression levels of receptor activator of nuclear factor kB ligand (RANKL) were stronger in the experimental group than the control group until 2 weeks after implantation. After 4 weeks, expression of RANKL in experimental group was similar to the control group. Conclusion: The results of this study suggest that LIPUS with Adipose-Derived Stem Cells in implantation could promote bone healing around titanium implants in rats with osteoporosis.