• 제목/요약/키워드: Adipose stem cell

검색결과 140건 처리시간 0.026초

Diphlorethohydroxycarmalol of Ishige okamurae and Caffeine Modified the Expression of Extracellular Fibrillars during Adipogenesis of Mouse Subcutaneous Adipose Derived Stem Cell

  • Jeon, Younmi;Song, Siyoung;Kim, Hagju;Cheon, Yong-Pil
    • 한국발생생물학회지:발생과생식
    • /
    • 제17권3호
    • /
    • pp.275-287
    • /
    • 2013
  • Although, one of the etiologies of localized lipodystrophy of the subcutaneous connective tissue (cellulite) is the histological alternation of adipose tissue, the characteristics of expression of the components of extracellular matrix (ECM) components during adipogenesis are not uncovered. In this study, the effects of caffeine and Ishige okamurae originated diphlorethohydroxycarmalol (DPHC) on the expression of extracellualr fibers was analyzed with quantitative RT-PCR during differentiation induction of mouse subcutaneous adipose derived stem cells (msADSC) into adipocyte. The expression levels of Col1a, Col3a1, and Col61a were decreased by the adipogenci induction in a time-dependent manners. However, Col2a mRNA and Col4a1 mRNA expressions were oposit to them. Caffeine and DPHC stimulated the changes of the expression of these collagens. Eln mRNA expression was increased by induction. DPHC stimulated the expression of it. Mfap5 mRNA expression was deceased in both adipogenic cell and matured adipocytes. Caffeine suppressed the expression of Mfap5 but the effect of DPHC was different by the concentration. The expression of bioglycan, decorin, and lumican were also modified by caffeine and DPHC in a concentration-dependent manner. Based on this study, we revealed firstly the effects of caffeine and DPHC on the expression of collagens, elastin, and glycoproteins during adipogenesis of msADSCs. Those results suggest that DPHC may have antiadipogenic effect and has more positive effets on normal adipose tissue generation and work as suppressor the abnormality of ECM structure. Such results indicate that DPHC can be applied in keeping the stability of the ECM of adipogenic tissues.

가토 모델에서 인체지방유래 줄기세포가 슬관절의 퇴행성 변화에 미치는 영향 (The Effects of Human Adipose Tissue-derived Stem Cells on Degenerative Change of Knee in Rabbit Model)

  • 정기환;김석권;정재우;허정;권용석;이근철
    • Archives of Plastic Surgery
    • /
    • 제35권6호
    • /
    • pp.637-644
    • /
    • 2008
  • Purpose: The survival of bone marrow derived stem cell was reported several times. But the survival of adipose tissue derived stem cells(hASCs) was not mentioned on. We studied the adipose tissue derived stem cell's survival and effect on articular cartilage in rabbits. Methods: Osteoarthritis was induced in twenty New Zealand white rabbits by intraarticular injection of monosodium iodoacetate(MIA). After four weeks, hASCs were also injected into the knee joints space without any vehicle, but the control group received phosphate buffered saline only. The histologic grade of articular cartilage was measured in 4 and 8 weeks after the transplantation of hASC and the viability of injected stem cells measured by Fluorescent in situ Hybridization (FISH) examination. Results: After 4 and 8 weeks from hASCs transplantation, histologic grade was not significantly difference between two groups(p>0.05), and the Y chromosome of the transplanted hASCs was not detected in articular cartilage. Conclusion: We found that direct injection of hASC in joint space didn't work on damaged articular cartilage repair.

Analysis of Molecular Expression in Adipose Tissue-Derived Mesenchymal Stem Cells : Prospects for Use in the Treatment of Intervertebral Disc Degeneration

  • Jin, Eun-Sun;Min, Joongkee;Jeon, Sang Ryong;Choi, Kyoung Hyo;Jeong, Je Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • 제53권4호
    • /
    • pp.207-212
    • /
    • 2013
  • Objective : Recent studies have shown encouraging progress toward the use of autogenic and allogenic mesenchymal stem cells (MSCs) to arrest, or even lead to partial regeneration in, intervertebral disc (IVD) degeneration. However, this technology is still in its infancy, and further development is required. The aim of this study was to analyze whether rat adipose-derived mesenchymal stem cells (ADMSC) can differentiate towards IVD-like cells after treatment with transforming growth factor ${\beta}3$ (TGF-${\beta}3$) in vitro. We also performed quantitative analysis of gene expression for ADMSC only, ADMSCs treated with TGF-${\beta}3$, and co-cultured ADMSCs treated with TGF-${\beta}3$. Methods : ADMSCs were sub-cultured to homogeneity and used in fluorocytometry assays for CD11, CD45, and CD90/Thy1. ADMSCs were differentiated in spheroid culture towards the chondrogenic lineage by the presence of TGF-${\beta}3$, dexamethasone, and ascorbate. We also co-cultured pure ADMSCs and nucleus pulposus cells in 24-well plates, and performed immunohistochemical staining, western blotting, and RT-PCR for quantitative analysis of gene expression. Results : Results of fluorocytometry were positive for CD90/Thy1 and negative for CD11 and CD45. TGF-${\beta}3$-mediated induction of ADMSCs led to the expression of the differentiation markers of intervertebral disc-like cells, such as aggrecan, collagen II, and sox-9. Co-cultured ADMSCs treated with TGF-${\beta}3$ showed higher expression of differentiation markers and greater extracellular matrix production compared with ADMSCs treated with TGF-${\beta}3$ alone. Conclusion : ADMSC treated with TGF-${\beta}3$ may be an attractive source for regeneration therapy in degenerative IVD. These findings may also help elucidate the pathologic mechanism of MSC therapy in the degeneration of IVD in vivo.

Protective effect of platelet-rich plasma against cold ischemia-induced apoptosis of canine adipose-derived mesenchymal stem cells

  • Suji Shin;Sung-Eon Kim;Seong-Won An;Seong-Mok Jeong;Young-Sam Kwon
    • 대한수의학회지
    • /
    • 제64권1호
    • /
    • pp.2.1-2.8
    • /
    • 2024
  • This study was performed to assess the antiapoptotic effect of canine platelet-rich plasma (PRP) treated on the canine adipose-derived mesenchymal stem cells (cMSCs) under cold ischemic conditions. The effect of preventing apoptosis of cMSCs was evaluated in the apoptotic condition induced by cold ischemic injury in vitro. To determine the progression of apoptosis, the changes in cell nucleus were observed using 4',6-diamidino-2-phenylindole (DAPI) fluorescence staining. In addition, we examined the mitochondrial membrane potential (MMP) and caspase-3 activity. When the cold hypoxic injury was applied to cMSCs, the apoptotic change was observed by DAPI staining, mitochondrial staining for MMP, and caspase-3 assay. PRP significantly decreased the number of apoptotic cells. Nuclear shrinkage and fragmentation of apoptotic cells in control groups were observed by DAPI staining. The MMP was recovered by the treatment of PRP. In addition, when the luminescence intensity was measured for caspase-3 activity, the value was significantly higher in the PRP treated groups than the control groups. The results of this study showed that the PRP may have a beneficial effect on apoptosis induced by cold ischemic injury.

Adipose tissue-derived mesenchymal stem cells reduce endometriosis cellular proliferation through their anti-inflammatory effects

  • Meligy, Fatma Y.;Elgamal, Dalia A.;Abdelzaher, Lobna A.;Khashbah, Maha Y.;El-Mokhtar, Mohamed A.;Sayed, Ayat A.;Refaiy, Abeer M.;Othman, Essam R.
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권4호
    • /
    • pp.322-336
    • /
    • 2021
  • Objective: Endometriosis is a chronic debilitating inflammatory condition characterized by the presence of endometrial tissues outside the uterine cavity. Pelvic soreness and infertility are the usual association. Due to the poor effectiveness of the hormone therapy and the high incidence of recurrence following surgical excision, there is no single effective option for management of endometriosis. Mesenchymal stem cells (MSCs) are multipotent stromal cells studied for their broad immunoregulatory and anti-inflammatory properties; however, their efficiency in endometriosis cases is still a controversial issue. Our study aim was to evaluate whether adipose tissue-derived MSCs (AD-MSCs) could help with endometriosis through their studied anti-inflammatory role. Methods: Female Wistar rats weighting 180 to 250 g were randomly divided into two groups: group 1, endometriosis group; established by transplanting autologous uterine tissue into rats' peritoneal cavities and group 2, stem cell treated group; treated with AD-MSCs on the 5th day after induction of endometriosis. The proliferative activity of the endometriosis lesions was evaluated through Ki67 staining. Quantitative estimation of interferon γ, tumor necrosis factor-α, interleukin (IL)-6, IL-1β, IL-10, and transforming growth factor β expression, as well as immunohistochemical detection of CD68 positive macrophages, were used to assess the inflammatory status. Results: The size and proliferative activity of endometriosis lesions were significantly reduced in the stem cell treated group. Stem cells efficiently mitigated endometriosis associated chronic inflammatory reactions estimated through reduction of CD68 positive macrophages and the expression of the proinflammatory cytokines. Conclusion: Stem cell therapy can be considered a novel remedy in endometriosis possibly through its anti-inflammatory and antiproliferative properties.

Antioxidant Effect of Annexin A-1 Induced by Low-dose Ionizing Radiation in Adipose-derived Stem Cells

  • You, Ji-Eun;Lee, Seung-Wan;Kim, Keun-Sik;Kim, Pyung-Hwan
    • 대한의생명과학회지
    • /
    • 제26권4호
    • /
    • pp.249-255
    • /
    • 2020
  • Radiation therapy is one of the primary options for the treatment of malignant tumors. Even though it is an effective anti-cancer treatment, it can cause serious complications owing to radiation-induced damage to the normal tissue around the tumor. It was recently reported that normal stem cell response to the genotoxic stress of ionizing radiation can boost the therapeutic effectiveness of radiation by repairing damaged cells. Therefore, we focused on annexin A-1 (ANXA1), one of the genes induced by low-dose irradiation, and assessed whether it can protect adipose-derived stem cells (ADSCs) against oxidative stress-induced damage caused by low-dose irradiation and improve effectively cell survival. After confirming ANXA1 expression in ADSCs transfected with an ANXA1 expression vector, exposure to hydrogen peroxide (H2O2) was used to mimic cellular damage induced by a chronic oxidative environment to assess cell survival under oxidative conditions. ANXA1-transfected ADSCs demonstrated that increased viability compared with un-transfected cells and exhibited enhanced anti-oxidative properties. Taken together, these results suggest that ANXA1 could be used as a potential therapeutic target to improve the survival of stem cells after low-dose radiation treatment.

Involvement of cAMP in the Human Serum-Induced Migration of Adipose-Derived Stem Cells

  • Lee, Minji;Koh, Wonyoung;Kim, Bomee;Chung, Hyeju;Cho, Gahyang;Kim, Haekwon
    • 한국발생생물학회지:발생과생식
    • /
    • 제20권2호
    • /
    • pp.101-108
    • /
    • 2016
  • Previously we observed that human adipose-derived stem cells (hADSCs) could form aggregation during culture in the presence of human serum (HS). In the present study, we have examined if the aggregation might result from the cell migration and analyzed the difference of cell adhesivity after culture in various conditions. When cells were cultured in fetal bovine serum (FBS) alone, there was no morphological change. Similarly, cells pretreated with FBS for 1 day or cultured in a mixture of FBS and HS showed little change. In contrast, cells cultured in HS alone exhibited formation of cell-free area (spacing) and/or cell aggregation. When cells cultured in FBS or pretreated with FBS were treated with 0.06% trypsin, almost cells remained attached to the dish surfaces. In contrast, when cells cultured in HS alone were examined, most cells detached from the dish by the same treatment. Treatment of cells with forskolin, isobutylmethyl xanthine (IBMX) or LY294002 inhibited the formation of spacing whereas H89 or Y27632 showed little effect. When these cells were treated with 0.06% trypsin after culture, most cells detached from the dishes as cells cultured in HS alone did. However, cells treated with IBMX exhibited weaker adhesivity than HS alone. Based on these observations, it is suggested that HS treatment might decrease the adhesivity and induce three-dimensional migration of hADSCs, in the latter of which cAMP signaling could be involved.

Simian virus 40의 T항원 도입으로 수립한 지방유래줄기세포주의 효율적인 무혈청 배양법 및 무혈청 배지조성 (Composition of a Medium for Serum-free Culture of an Adipose-derived Stem Cell Line Established with a Simian Virus 40 T Antigen)

  • 김규빈;주우홍;김동완
    • 생명과학회지
    • /
    • 제24권12호
    • /
    • pp.1301-1307
    • /
    • 2014
  • 지방유래줄기세포(adipose-derived stem cell; ADSC)는 조직재생을 위한 탁월한 수단으로 인정되고 있으나 세포증식속도가 느려 ADSC의 배양용 배지에는 대게 fetal bovine serum (FBS)이 첨가된다. FBS는 세포에 다양한 영양분을 공급하지만 세포의 기능에 영향을 미칠 수 있는 미 동정 물질도 많이 함유하고 있다. FBS에 의한 예상밖의 영향과 동물유래물질의 오염을 방지하기 위해 ADSC의 무혈청 배양법에 관한 연구가 광범위하게 이루어지고 있다. 본 연구에서는 ADSC세포에 SV40의 T항원 유전자를 도입하여 증식속도를 향상시킨 ADSC-T세포주의 효율적인 무혈청 배양법을 확립하기 위해 ADSC-T의 세포증식에 미치는 아미노산복합체, 비타민 복합체 및 여러가지 영양분 혼합물(B27)의 영향을 검토하였다. 그 결과, ADSC-T세포를 DMEM/F12 무혈청 배지에 현탁하여 plate에 주입하였을 때는 증식하지 않았으며 아미노산, 비타민 및 B27 영양소복합체는 증식촉진효과를 나타내지 않았다. 그러나 ADSC-T세포를 유혈청 DMEM배지로 24시간 배양 후 DMEM/F12 무혈청 배지로 교체하여 배양했을 때는 세포가 증식하였으며 이때, 비타민 복합체와 B27 영양소복합체는 증식촉진효과를 나타내었다. 또한 Stem pro 배지를 이용하면 ADSC-T의 무혈청 부유배양이 가능한 것으로 나타났다. ADSC-T세포는 분자량 70 kDa 부근의 단백질을 다량으로 분비하였으며, 성장인자 중에서 insulin-like growth factor (IGF)와 fibroblast growth factor basic (FGF basic)는 유혈청 배양보다 무혈청 배양에서 더 많이 분비되었다.

Case Reports of Adipose-derived Stem Cell Therapy for Nasal Skin Necrosis after Filler Injection

  • Sung, Ha-Min;Suh, In-Suck;Lee, Hoon-Bum;Tak, Kyoung-Seok;Moon, Kyung-Min;Jung, Min-Su
    • Archives of Plastic Surgery
    • /
    • 제39권1호
    • /
    • pp.51-54
    • /
    • 2012
  • With the gradual increase of cases using fillers, cases of patients treated by non-medical professionals or inexperienced physicians resulting in complications are also increasing. We herein report 2 patients who experienced acute complications after receiving filler injections and were successfully treated with adipose-derived stem cell (ADSCs) therapy. Case 1 was a 23-year-old female patient who received a filler (Restylane) injection in her forehead, glabella, and nose by a non-medical professional. The day after her injection, inflammation was observed with a $3{\times}3cm$ skin necrosis. Case 2 was a 30-year-old woman who received a filler injection of hyaluronic acid gel (Juvederm) on her nasal dorsum and tip at a private clinic. She developed erythema and swelling in the filler-injected area A solution containing ADSCs harvested from each patient's abdominal subcutaneous tissue was injected into the lesion at the subcutaneous and dermis levels. The wounds healed without additional treatment. With continuous follow-up, both patients experienced only fine linear scars 6 months postoperatively. By using adipose-derived stem cells, we successfully treated the acute complications of skin necrosis after the filler injection, resulting in much less scarring, and more satisfactory results were achieved not only in wound healing, but also in esthetics.