• Title/Summary/Keyword: Adipogenic differentiation

Search Result 268, Processing Time 0.03 seconds

Gene Expression of Candidate Genes Involved in Fat Metabolism During In vitro Adipogenic Differentiation of Bovine Mesenchymal Stem Cell (Bovine Mesenchymal Stem Cell의 지방분화를 이용한 지방대사관련 후보 유전자의 발현분석)

  • Kim, Sung-Kon;Kim, Nam-Kuk;Yoon, Du-Hak;Kim, Tae-Hun;Yang, Boo-Keun;Lee, Hyun-Jeong
    • Journal of Animal Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.265-270
    • /
    • 2010
  • Adipogenesis has been one of the most intensely studied models of cellular differentiation. During adipogenesis, differential expression of many adipogenesis related genes lead to profound changes in cellular, morphological, and physiological characteristics of the differentiating cells. The aim of the present study was to examine the expression levels of adipogenic candidate genes, cAMP early repressor (ICER), nephroblastoma over-expressed protein (NOV), heat shock protein beta 1 (HSPB1) and succinate dehydrogenase (SDH), during adipogenesis of bovine mesenchymal stem cells (BMSC). The BMSC were cultured in DMEM / low glucose medium with adipogenic inducers for 6 days and the expression of various candidate genes which seemed related to adipogenesis were measured by real-time PCR. This study showed that the expression of peroxisome proliferator activated receptor ${\gamma}$(PPAR${\gamma}$) and fatty acid binding protein 4 (FABP4) genes as adipogenic indicators were increased to 3.11 and 3.11 folds on day 6 than on day 0, respectively (p<0.05). To determine whether candidate genes were related to adipogenesis, the expression levels of ICER, NOV, HSPB1, and SDH genes were measured during adipogenesis in BMSC. Our results showed that the expression level of ICER gene was significantly increased to 4.12 folds (0.01729 vs. 0.07138; p<0.05), whereas NOV, HSPB1, and SDH genes were decreased to 2.89, 3.18 and 2.36 folds, respectively, on day 6 when compared to day 0. These results suggest that these candidate genes have stimulatory or inhibitory effects on adipogenesis in BMSC, indicating that these genes may be directly or indirectly related to the adipogenic event of adipose precursor cells.

Effect of Probiotics-Fermented Samjunghwan on Differentiation in 3T3-L1 Preadipocytes (3T3-L1 전지방세포에서 발효 삼정환의 지방 분화 억제 효과)

  • Song, Mi-Young;Bose, Shambhunath;Kim, Ho-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Samjunghwan (SJH) was fermented using five different probiotic bacterial strains (Lactobacillus plantarum, Enterococcus faecium, Pediococcus pentosaceus, Lactobacillus acidophilus or Bifidobacterium longum) separately. We examined the inhibition of preadipocyte differentiation through Oil Red O staining and analyzed the expression of CCAAT/enhancer-binding protein ${\alpha}$ ($C/EPB{\alpha}$), peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$), uncoupling protein (UCP)-2, and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase which are adipogenic transcription factors. Both Lactobacillus plantarum and Enterococcus faecium-fermented SJH reduced Oil Red O dye staining compared with the same dose of non-fermented SJH. Only Lactobacillus plantarum-fermented SJH inhibited all adipogenic transcription factors and showed the best down-regulation of $PPAR{\gamma}$, UCP-2, and HMG-CoA reductase compared with the same dose of non-fermented SJH. The effect of SJH on the inhibition of preadipocyte differentiation was more prominent from the fermented SJH. Lactobacillus plantarum-fermented SJH, in particular, blocks the expression of $PPAR{\gamma}$, UCP-2, HMG-CoA reductase.

Inhibitory Effects of Allium sacculiferum Max. Methanol Extracts on ROS Production and Lipid Accumulation during Differentiation of 3T3-L1 Cells (참산부추(Allium sacculiferum Max.) 메탄올 추출물의 지방세포 내 ROS 생성 및 지질 축적 억제 효능)

  • Choi, Hye-Young;Kim, Gun-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.822-828
    • /
    • 2014
  • Allium sacculiferum Max. (ASM) is a perennial plant of the Liliaceae family and grows over the entire regions of Korea. Obesity is a serious health problem worldwide and has currently become a prevalent chronic disease. Adipocytes produced by preadipocyte differentiation during adipogenesis and adipocytes combined with abnormal accumulation cause obesity. Recently, intracellular reactive oxygen species (ROS) were shown to accelerate lipid accumulation in 3T3-L1 cells. In this study, we investigated the effects of ASM methanol extracts on ROS production and lipid accumulation in 3T3-L1 adipocytes. Our results indicate that the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of ASM methanol extracts increased in a dose-dependent manner. ASM methanol extracts suppressed ROS production and lipid accumulation during adipogenesis. In addition, ASM methanol extracts inhibited the mRNA expression of both pro-oxidant enzymes such as glucose-6-phosphate dehydrogenase as well as the transcription factors, including sterol regulatory element-binding proteins 1c, peroxisome proliferator-activated receptor ${\gamma}$, and CCAAT/enhancer-binding protein ${\alpha}$. Our results suggest that ASM methanol extracts inhibit ROS production and lipid accumulation by controlling ROS regulatory genes and adipogenic transcription factors. Thus, ASM has potent natural antioxidant, anti-adipogenic properties and have potential in the development of a potent anti-obesity agent.

Effect of Acacia catechu Extract on 3T3-L1 Preadipocyte Differentiation (지방세포의 분화에 미치는 Acacia catechu 추출물의 항비만 효과)

  • Kim, Dong-Gyu;Kang, Min Jung;Suh, Hwa Jin;Kwon, Oh Oun;Shin, Jung Hye
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.8
    • /
    • pp.1107-1113
    • /
    • 2016
  • The purpose of this study was to investigate the effects of catechu water extract on adipogenesis in 3T3-L1 adipocytes. 3T3-L1 preadipocytes were differentiated with adipogenic regents by incubation for 9 days in the absence or presence of catechu extract ranging from $1{\sim}200{\mu}g/mL$. The effect of catechu extracts on cell proliferation of 3T3-L1 preadipocytes was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of catechu extracts on 3T3-L1 differentiation was examined by measuring intracellular lipid droplet and triglyceride contents. These results were obtained from preadipocyte proliferation and adipocyte differentiation of 3T3-L1. Catechu extracts inhibited lipid accumulation and remarkably decreased triglyceride contents in 3T3-L1 preadipocytes at a concentration showing no cytotoxicity. The anti-adipogenic effects of catechu appeared to be mediated by significant down-regulation of expression of peroxisome proliferator-activated receptor ${\gamma}$, CCAAT/enhancer-binding protein ${\alpha}$, and sterol regulatory element-binding protein 1c proteins apart from expression of hormone-sensitive lipase. We suggest that catechu extracts significantly inhibit adipogenesis and can be used for regulation of obesity.

Red pepper seed water extract inhibits preadipocyte differentiation and induces mature adipocyte apoptosis in 3T3-L1 cells

  • Kim, Hwa-Jin;You, Mi-Kyoung;Lee, Young-Hyun;Kim, Hyun-Jung;Adhikari, Deepak;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.12 no.6
    • /
    • pp.494-502
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Reducing the number of adipocytes by inducing apoptosis of mature adipocytes as well as suppressing differentiation of preadipocytes plays an important role in preventing obesity. This study examines the anti-adipogenic and pro-apoptotic effect of red pepper seed water extract (RPS) prepared at $4^{\circ}C$ (RPS4) in 3T3-L1 cells. MATERIALS/METHODS: Effect of RPS4 or its fractions on lipid accumulation was determined in 3T3-L1 cells using oil red O (ORO) staining. The expressions of AMP-activated protein kinase (AMPK) and adipogenic associated proteins [peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR-{\gamma}$), CCAAT/enhancer-binding proteins ${\alpha}$ (C/EBP ${\alpha}$), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC)] were measured in 3T3-L1 cells treated with RPS4. Apoptosis and the expression of Akt and Bcl-2 family proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad), Bcl-2 like protein 4 (Bax), Bal-2 homologous antagonist/killer (Bak)] were measured in mature 3T3-L1 cells treated with RPS4. RESULTS: Treatment of RPS4 ($0-75{\mu}g/mL$) or its fractions ($0-50{\mu}g/mL$) for 24 h did not have an apparent cytotoxicity on pre and mature 3T3-L1 cells. RPS4 significantly suppressed differentiation and cellular lipid accumulation by increasing the phosphorylation of AMPK and reducing the expression of $PPAR-{\gamma}$, C/EBP ${\alpha}$, SREBP-1c, FAS, and ACC. In addition, all fractions except ethyl acetate fraction significantly suppressed cellular lipid accumulation. RPS4 induced the apoptosis of mature adipocytes by hypophosphorylating Akt, increasing the expression of the pro-apoptotic proteins, Bak, Bax, and Bad, and reducing the expression of the anti-apoptotic proteins, Bcl-2 and p-Bad. CONCLUSIONS: These finding suggest that RPS4 can reduce the numbers as well as the size of adipocytes and might useful for preventing and treating obesity.

Inhibition of Adipocyte Differentiation and Adipogenesis by the Extract from Sophora japonica Fruit (회화나무 열매 추출물에 의한 지방세포 분화 및 지방생성 억제)

  • Ji Min Jung;Su Hui Seong;Bo-Ram Kim;Jin-Ho Kim;Ha-Nul Lee;Chan Seo;Jung Eun Kim;Sua Im;Kyung-Min Choi;Jin-Woo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.51-51
    • /
    • 2023
  • The world-wide rate of obesity is increasing continuously, representing a serious medical threat since it is associated with a variety of diseases including type 2 diabetes, cardiovascular disease, and numerous cancers. Sophora japonicais used as a traditional herb for medicinal purposes in eastern Asia. However, the anti-obesity effects of S. japonicafruit have not been explored. The aim of this study is to investigate the inhibition of adipocyte differentiation and adipogenesis by an ethanol extract of S. japonicafruit (EESF) in 3T3-L1 pre-adipocytes. Our results demonstrate that EESF suppressed the terminal differentiation of 3T3-L1 pre-adipocytes in a dose-dependent manner, as confirmed by a decrease in lipid droplet number and lipid content through Oil Red O staining. EESF significantly reduced the accumulation of cellular triglyceride, which was associated with a significant inhibition of the levels of pro-adipogenic transcription factors, including PPARγ, C/EBPα and C/EBPβ. In addition, EESF potentially down regulated the expression levels of adipocyte-specific proteins, including aP2 and leptin. In particular, EESF treatment effectively enhanced the activation of the AMPK signaling pathway; however, the co-treatment with compound C, an inhibitor of AMPK, significantly restored the EESF-induced inhibition of pro-adipogenic transcription factors and adipocyte-specific genes. These results indicate that EESF may exert an anti-obesity effect by controlling the AMPK signaling pathway, suggesting that the fruit extract of S. japonica may be a potential anti-obesity agent.

  • PDF

RNA-Seq explores the functional role of the fibroblast growth factor 10 gene in bovine adipocytes differentiation

  • Nurgulsim Kaster;Rajwali Khan;Ijaz Ahmad;Kazhgaliyev Nurlybay Zhigerbayevich;Imbay Seisembay;Akhmetbekov Nurbolat;Shaikenova Kymbat Hamitovna;Omarova Karlygash Mirambekovna;Makhanbetova Aizhan Bekbolatovna;Tlegen Garipovich Amangaliyev;Ateikhan Bolatbek;Titanov Zhanat Yeginbaevich;Shakoor Ahmad;Zan Linsen;Begenova Ainagul Baibolsynovna
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.929-943
    • /
    • 2024
  • Objective: The present study was executed to explore the molecular mechanism of fibroblast growth factor 10 (FGF10) gene in bovine adipogenesis. Methods: The bovine FGF10 gene was overexpressed through Ad-FGF10 or inhibited through siFGF10 and their negative control (NC) in bovine adipocytes, and the multiplicity of infection, transfection efficiency, interference efficiency were evaluated through quantitative real-time polymerase chain reaction, western blotting and fluorescence microscopy. The lipid droplets, triglycerides (TG) content and the expression levels of adipogenic marker genes were measured during preadipocytes differentiation. The differentially expressed genes were explored through deep RNA sequencing. Results: The highest mRNA level was found in omasum, subcutaneous fat, and intramuscular fat. Moreover, the highest mRNA level was found in adipocytes at day 4 of differentiation. The results of red-oil o staining showed that overexpression (Ad-FGF10) of the FGF10 gene significantly (p<0.05) reduced the lipid droplets and TG content, and their down-regulation (siFGF10) increased the measurement of lipid droplets and TG in differentiated bovine adipocytes. Furthermore, the overexpression of the FGF10 gene down regulated the mRNA levels of adipogenic marker genes such as CCAAT enhancer binding protein alpha (C/EBPα), fatty acid binding protein (FABP4), peroxisome proliferator-activated receptor-γ (PPARγ), lipoprotein lipase (LPL), and Fas cell surface death receptor (FAS), similarly, down-regulation of the FGF10 gene enriched the mRNA levels of C/EBPα, PPARγ, FABP4, and LPL genes (p<0.01). Additionally, the protein levels of PPARγ and FABP4 were reduced (p<0.05) in adipocytes infected with Ad-FGF10 gene and enriched in adipocytes transfected with siFGF10. Moreover, a total of 1,774 differentially expressed genes (DEGs) including 157 up regulated and 1,617 down regulated genes were explored in adipocytes infected with Ad-FGF10 or Ad-NC through deep RNA-sequencing. The top Kyoto encyclopedia of genes and genomes pathways regulated through DEGs were the PPAR signaling pathway, cell cycle, base excision repair, DNA replication, apoptosis, and regulation of lipolysis in adipocytes. Conclusion: Therefore, we can conclude that the FGF10 gene is a negative regulator of bovine adipogenesis and could be used as a candidate gene in marker-assisted selection.

Anti-obesity effects of Glycyrrhiza uralensis ethanol extract on the inhibition of 3T3-L1 adipocyte differentiation in high-fat diet-induced C57BL/6J mice (감초 주정추출물의 3T3-L1 지방세포 분화 억제 및 고지방 식이로 유도된 C57BL/6J 마우스에 대한 항비만 효과)

  • Seon Kyeong Park;Jangho Lee;Soo Hyun Park;Yu Geon Lee
    • Food Science and Preservation
    • /
    • v.30 no.4
    • /
    • pp.716-728
    • /
    • 2023
  • The anti-adipogenic activity of Glycyrrhiza uralensis was investigated by examining the effects of its ethanol extract (GUE) on a mouse model with a high-fat diet (HFD) and 3T3-L1 preadipocytes during adipocyte differentiation. GUE administration for eight weeks significantly reduced weight gain in mice fed an HFD. GUE effectively inhibited 3T3-L1 preadipocyte differentiation and lipid droplet accumulation. This inhibitory effect is associated with the downregulation of key adipogenic regulators, including PPARγ and C/EBPα, and the modulation of adipose metabolism regulators, such as Fasn and Fabp4. LC-Q-TOF-MS analysis identified twelve phenolic and flavonoid compounds, including liquiritigenin and licorice saponin, in the GUE. These findings demonstrate that the anti-obesity effect of the GUE is attributed to the biological activity of its phenolic and flavonoid compounds. Therefore, the GUE has potential anti-obesity activity. Moreover, further studies on the isolation of bioactive components from the GUE and the investigation of the underlying molecular mechanisms of the GUE are required to establish its efficacy in metabolic disorders, including obesity.

Effects of Loquat(Eriobotrya japonica Lindl.) Extracts in Different Aerial Components on Differentiation of 3T3-L1 Cells and Pig Preadipocytes (비파 부위별 추출물이 3T3-L1 세포와 돼지 지방전구세포의 분화에 미치는 효과)

  • Lee, Hwan;Lee, Jae-Joon
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.4
    • /
    • pp.863-873
    • /
    • 2016
  • The current study was undertaken to determine the effects of the ethanol extracts of loquat (Eriobotrya japonica Lindl.) seeds, flesh or leaves on the differentiation of 3T3-L1 cells and male pig preadipocytes. The cell number was measured with the MTT assay after trypsin digestion. The cell differentiation was determined by measuring the glycerol-3-phosphate dehydrogenase (GPDH) activity and triglyceride(TG) content. No cytotoxicity was observed from the loquat flesh and leaf ethanol extracts at concentrations of 5, 10, 25, 50, 100 or $200{\mu}g/mL$ in 3T3-L1 cells and pig preadipocytes. However, the cell viability of neither cell line were affected by up $50{\mu}g/mL$ of loquat seed ethanol extract. Treatment with the loquat seed and leaf ethanol extracts significantly suppressed the terminal differentiation of both cell lines in a dose-dependent manner, as confirmed by the decrease in the glycerol-3-phosphate dehydrogenase(GPDH) activity and TG content. Treatment with the loquat seed and leaf ethanol extracts inhibited the GPDH activity and reduced the TG content of both cell types more effectively than that with the loquat flesh ethanol extract. The most potent anti-adipogenic effect was obtained in the case of the ethanol extract of loquat seeds.

Subpopulations of miniature pig mesenchymal stromal cells with different differentiation potentials differ in the expression of octamer-binding transcription factor 4 and sex determining region Y-box 2

  • Jeon, Ryounghoon;Park, Sungjo;Lee, Sung-Lim;Rho, Gyu-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.515-524
    • /
    • 2020
  • Objective: Human mesenchymal stromal cells (MSCs) exhibit variable differentiation potential and can be divided accordingly into distinct subpopulations whose ratios vary with donor age. However, it is unknown whether the same is true in pigs. This study investigated MSC subpopulations in miniature pig and compared their characteristics in young (2 to 3 months) and adult (27 to 35 months) pigs. Methods: Osteogenic, chondrogenic, and adipogenic capacity of isolated MSCs was evaluated by von Kossa, Alcian blue, and oil red O staining, respectively. Cell surface antigen expression was determined by flow cytometry. Proliferative capacity was assessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Expression of marker genes was detected by quantitative real-time polymerase chain reaction. Results: Porcine MSCs comprised cells with trilineage and bilineage differentiation potential (tMSCs and bMSCs, respectively) and non-differentiating stromal cells (NDSCs). The tMSC and bMSC fractions were smaller in adult than in young pigs (63.0% vs 71.2% and 11.6% vs 24.0%, respectively, p<0.05); NDSCs showed the opposite trend (25.4% vs 4.8%; p<0.05). Subpopulations showed no differences in morphology, cell surface antigen expression, or proliferative capacity, but octamer-binding transcription factor 4 (OCT4) expression was higher in tMSCs than in bMSCs and NDSCs (p<0.05), whereas sex determining region Y-box 2 (SOX2) expression was higher in tMSCs and bMSCs than in NDSCs (p<0.05). Aging had no effect on these trends. Conclusion: Porcine MSCs comprise distinct subpopulations that differ in their differentiation potential and OCT4 and SOX2 expression. Aging does not affect the characteristics of each subpopulation but alters their ratios.