• 제목/요약/키워드: Adipogenic differentiation

검색결과 269건 처리시간 0.023초

SLC3A2 and SLC7A2 Mediate the Exogenous Putrescine-Induced Adipocyte Differentiation

  • Jin, Eom;Juhyun, Choi;Sung-Suk, Suh;Jong Bae, Seo
    • Molecules and Cells
    • /
    • 제45권12호
    • /
    • pp.963-975
    • /
    • 2022
  • Exogenous polyamines are able to induce life span and improve glucose homeostasis and insulin sensitivity. However, the effects of exogenous polyamines on adipocyte differentiation and which polyamine transporters mediate them have not been elucidated yet. Here, we identified for the first time that exogenous polyamines can clearly stimulate adipocyte differentiation through polyamine transporters, solute carrier family 3 member A2 (SLC3A2) and SLC7A1. Exogenous polyamines markedly promote 3T3-L1 adipocyte differentiation by increasing the intracellular lipid accumulation and the expression of both adipogenic and lipogenic genes in a concentration-dependent manner. In particular, exogenous putrescine mainly regulates adipocyte differentiation in the early and intermediate stages. Moreover, we have assessed the expression of polyamine transporter genes in 3T3-L1 preadipocytes and adipocytes. Interestingly, the putrescine-induced adipocyte differentiation was found to be significantly suppressed in response to a treatment with a polyamine transporter inhibitor (AMXT-1501). Furthermore, knockdown experiments using siRNA that specifically targeted SLC3A2 or SLC7A2, revealed that both SLC3A2 and SLC7A2 act as important transporters in the cellular importing of exogenous putrescine. Thus, the exogenous putrescine entering the adipocytes via cellular transporters is involved in adipogenesis through a modulation of both the mitotic clonal expansion and the expression of master transcription factors. Taken together, these results suggest that exogenous polyamines (such as putrescine) entering the adipocytes through polyamine transporters, can stimulate adipogenesis.

흑마늘 추출물에 의한 3T3-L1 지방전구세포의 분화 및 adipogenesis 억제에 관한 연구 (Inhibition of Adipocyte Differentiation and Adipogenesis by Aged Black Garlic Extracts in 3T3-L1 Preadipocytes)

  • 박정애;박철;한민호;김병우;정윤호;최영현
    • 생명과학회지
    • /
    • 제21권5호
    • /
    • pp.720-728
    • /
    • 2011
  • 본 연구에서는 3T3-L1 지방전구세포에서 생마늘 및 흑마늘 열수추출물이 insulin, dexamethasone 및 IBMX 등과 같은 분화유도인자에 의하여 유발되는 lipid droplet 및 triglyceride 생성 등과 같은 지방세포로의 분화와 함께 이러한 분화과정에 중요한 역할을 하는 adipogenic transcription factor인 PPAR${\gamma}$, C/EBP${\alpha}$ 및 C/EBP${\beta}$의 발현에 어떠한 영향을 미치는지를 조사하였다. 이를 위하여 성숙한 지방세포에서 나타나는 lipid droplet의 생성에 어떠한 영향을 미치는 지를 확인한 결과, WEABG 처리군에서 lipid droplet의 생성이 현저하게 억제되는 것으로 나타났다. Lipid droplet과 함께 성숙한 지방세포에서 나타나는 특징 중 하나로서 비만의 원인으로 작용하는 지방세포 내의 저장 지방인 triglyceride 생성 정도를 확인한 결과에서도 WEABG 처리군에서 triglyceride 억제효과가 강하게 나타났다. 또한 WERG 및 WEABG-A는 분화유도인자에 의하여 유발된 PPAR${\gamma}$, C/EBP${\alpha}$ 및 C/EBP${\beta}$의 발현 억제에는 큰 영향을 미치지 못하였지만 WEABG는 그들의 발현을 전사 및 번역 수준에서 현저하게 억제시켰다. 이는 WEABG가 adipogenic transcription factor의 발현을 효과적으로 억제함으로서 lipid droplet 및 triglyceride 생성을 억제하여 지방세포로의 분화를 막는 항비만 효능을 가질 수 있음을 의미하는 결과이다. 본 연구 결과는 흑마늘의 비만억제 가능성을 제시하는 것으로서 항비만 기전에 대한 생화학적 해석 및 이를 활용한 향후 지속적인 연구를 위한 귀중한 자료로서 그 가치가 매우 높을 것으로 생각된다.

Adipogenesis관련 유전자발현감소와 Cell Cycle Arrest를 통한 EGCG와 Glucosamine-6-Phosphate의 Anti-Obesity 효과 (Anti-obesity effect of EGCG and glucosamine-6-phosphate through decreased expression of genes related to adipogenesis and cell cycle arrest in 3T3-L1 adipocytes)

  • 김꽃별;장성희
    • Journal of Nutrition and Health
    • /
    • 제47권1호
    • /
    • pp.1-11
    • /
    • 2014
  • 널리 음용되고 있는 녹차의 EGCG과 우리나라 국민의 상당수가 복용하고 있는 건강기능성 식품 성분인 글루코사민은 이전의 연구들을 통해서 지방세포의 분화를 억제하는데 효과가 있다고 보고되어왔다. 이 두 물질의 병합처리로 기대되어지는 지방세포에서의 adipogenesis 및 지방축적감소에 대한 상승효과는 검증된 바 없으며, 효과에 대한 cell cycle 차원에서의 접근은 없었다. 본 연구 결과에서 EGCG와 Glucosamine 6-phosphate는 adipogenesis 전사인자인 $PPAR{\gamma}$, $C/EBP{\alpha}$, SREBP1에 대한 직접적인 발현 억제 뿐아니라, $PPAR{\gamma}$, $C/EBP{\alpha}$, SREBP1와 매개된 FAS, ACSL1, LPL과 같은 adipogenic target 유전자의 발현 감소를 통하여 지방세포의 분화와 지방세포 내 지방축적을 감소시키는 효과를 나타냈다. 그리고 HSL과 perilipin의 발현조절을 통해 부분적인 lipolytic effet도 나타냈다. 또한 지방세포의 분화가 개시되는데 있어 중요한 DNA의 remodeling 과정인 mitotic clonal expansion (MCE) 과정 중 G0/G1 phase 단계에서 cell cycle 정지 유도와 그로인한 S phase 및 G2/M phase로 세포주기이행의 방해를 통해 지방세포가 분화되는 것은 억제하였다. 이러한 효과들은 EGCG 농도가 높아질수록, 그리고 EGCG를 단독으로 처리한경우보다 Glucosamine 6-phosphate와 병합하였을 때 효과적이었다. 따라서 EGCG 단독처리 및 glucosamine 6-phosphate와의 병합처리는 지방세포에서 adipogenesis와 adipogenic관련 유전자들의 발현 억제 및 MCE 단계의 cell cycle arrest를 통해 지방세포의 분화를 억제하고 지방축적을 감소시켜 항비만 효과를 나타냈으며, 이러한 효과는 두 성분의 병합처리에서 조금 더 효과적이었다고 할 수 있다. 비록 두 성분의 병합처리가 기대했던 만큼은 아니었으나 항비만 효과에 대한 상승효과가 있다고 볼 수 있다.

Inhibition of Adipocyte Differentiation by MeOH Extract from Carduus crispus through ERK and p38 MAPK Pathways

  • Lee, Eun-Jeong;Joo, Eun-Ji;Hong, Yoo-Na;Kim, Yeong-Shik
    • Natural Product Sciences
    • /
    • 제17권4호
    • /
    • pp.273-278
    • /
    • 2011
  • In this study, the effects of a methanol (MeOH) extract of Carduus crispus L. (Asteraceae) on adipogenesis was investigated in 3T3-L1 cells. To differentiate preadipocytes to adipocytes, confluent 3T3-L1 preadipocytes were treated with a hormone mixture, which included isobutylmethylxanthine, dexamethasone, and insulin (MDI). The methanol extract of C. crispus significantly decreased fat accumulation by inhibiting adipogenic signal transcriptional factors in MDI-induced 3T3-L1 cells in a dose-dependent manner. In MTT assays and on PI-staining, methanol extract of C. crispus inhibited the proliferation of 3T3-L1 cells during mitotic clonal expansion (MCE). The anti-adipogenic effect of the Carduus extract seemed to be associated with the upregulation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) pathways within the first 2 days after MDI treatment. These results suggest that methanol extract of C. crispus might be beneficial for the treatment of obesity.

Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells

  • Seo, Min-Jung;Lee, Ok-Hwan;Choi, Hyeon-Son;Lee, Boo-Yong
    • Preventive Nutrition and Food Science
    • /
    • 제17권2호
    • /
    • pp.129-135
    • /
    • 2012
  • GPAR{elidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPAR${\gamma}$(peroxisome proliferator-activated receptor-${\gamma}$) and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dismutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes.

AMPK 활성화를 통한 (-)-Epigallocatechin-3-gallate의 지방세포분화 억제 효과 (Inhibitory Effects of (-)-Epigallocatechin-3-gallate on Adipogenesis via AMPK Activation in 3T3-L1 Cells)

  • 김영화
    • 한국식품영양학회지
    • /
    • 제30권5호
    • /
    • pp.1035-1041
    • /
    • 2017
  • (-)-Epigallocatechin-3-gallate (EGCG) is a major catechin found in green tea. It is reported that EGCG possesses various health benefits including anti-cancer, antioxidant, anti-diabetes, and anti-obesity. The objective of this study was to investigate the effects of EGCG on adipogenesis via activation of AMP-activated protein kinase (AMPK) pathway in 3T3-L1 preadipocytes. In order to determine the effects of EGCG on adipogenesis, preadipocyte differentiation was induced in the presence or absence of EGCG ($0{\sim}100{\mu}M$) for a period of 6 days. EGCG significantly inhibited fat accumulation and suppressed the expression of adipogenic specific proteins including peroxisome proliferator-activated receptor (PPAR)-${\gamma}$. Also, EGCG markedly increased the activation of AMPK and acetyl-CoA carboxylase (ACC) and the production of intracellular reactive oxygen species (ROS). However, any pretreatment with a specific AMPK inhibitor, compound C, abolished the inhibitory effects of the EGCG on $PPAR{\gamma}$ expression. This study suggests that EGCG has anti-adipogenic effects through modulation of the AMPK signaling pathway and therefore, may be a promising antiobesity agent.

Bioconversion Products of Whey by Lactic Acid Bacteria Exert Anti-Adipogenic Effect

  • Lee, Ji Soo;Hyun, In Kyung;Yoon, Ji-Won;Seo, Hye-Jin;Kang, Seok-Seong
    • 한국축산식품학회지
    • /
    • 제41권1호
    • /
    • pp.145-152
    • /
    • 2021
  • Microbial bioconversion using lactic acid bacteria (LAB) provides several human health benefits. Although whey and whey-derived bioactive compounds can contribute to an improvement in human health, the potential anti-obesity effect of whey bioconversion by LAB has not been well studied. This study aimed to investigate whether bioconversion of whey by Pediococcus pentosaceus KI31 and Lactobacillus sakei KI36 (KI31-W and KI36-W, respectively) inhibits 3T3-L1 preadipocyte differentiation. Both KI31-W and KI36-W reduced intracellular lipid accumulation significantly, without decreasing 3T3-L1 preadipocyte proliferation. In addition, obesity-related transcription factor (peroxisome proliferator-activated receptor γ) and genes (adipocyte fatty acid-binding protein and lipoprotein lipase) were down-regulated significantly in 3T3-L1 cells in the presence of KI31-W and KI36-W. Collectively, these results suggest that bioconversion of whey by LAB exhibits anti-adipogenic activity and may be applied as a therapeutic agent for obesity.

Epigenetic role of nuclear S6K1 in early adipogenesis

  • Yi, Sang Ah;Han, Jihoon;Han, Jeung-Whan
    • BMB Reports
    • /
    • 제49권8호
    • /
    • pp.401-402
    • /
    • 2016
  • S6K1 is a key regulator of cell growth, cell size, and metabolism. Although the role of cytosolic S6K1 in cellular processes is well established, the function of S6K1 in the nucleus remains poorly understood. Our recent study has revealed that S6K1 is translocated into the nucleus upon adipogenic stimulus where it directly binds to and phosphorylates H2B at serine 36. Such phosphorylation promotes EZH2 recruitment and subsequent histone H3K27 trimethylation on the promoter of its target genes including Wnt6, Wnt10a, and Wnt10b, leading to repression of their expression. S6K1-mediated suppression of Wnt genes facilitates adipogenic differentiation through the expression of adipogenic transcription factors PPARγ and Cebpa. White adipose tissues from S6K1-deficient mice consistently exhibit marked reduction in H2BS36 phosphorylation (H2BS36p) and H3K27 trimethylation (H3K27me3), leading to enhanced expression of Wnt genes. In addition, expression levels of H2BS36p and H3K27me3 are highly elevated in white adipose tissues from mice fed on high-fat diet or from obese humans. These findings describe a novel role of S6K1 as a transcriptional regulator controlling an epigenetic network initiated by phosphorylation of H2B and trimethylation of H3, thus shutting off Wnt gene expression in early adipogenesis.

Acer okamotoanum Nakai Leaf Extract Inhibits Adipogenesis Via Suppressing Expression of PPAR γ and C/EBP α in 3T3-L1 Cells

  • Kim, Eun-Joo;Kang, Min-jae;Seo, Yong Bae;Nam, Soo-Wan;Kim, Gun-Do
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권10호
    • /
    • pp.1645-1653
    • /
    • 2018
  • The genus Acer contains several species with various bioactivities including antioxidant, antitumor and anti-inflammatory properties. However, Acer okamotoanum Nakai, one species within this genus has not been fully studied yet. Therefore, in this study, we investigated the anti-adipogenic activities of leaf extract from A. okamotoanum Nakai (LEAO) on 3T3-L1 preadipocytes. Adipogenesis is one of the cell differentiation processes, which converts preadipocytes into mature adipocytes. Nowadays, inhibition of adipogenesis is considered as an effective strategy in the field of anti-obesity research. In this study, we observed that LEAO decreased the accumulation of lipid droplets during adipogenesis and down-regulated the expression of key adipogenic transcription factors such as peroxisome proliferator-activated receptor ${\gamma}$ (PPAR ${\gamma}$) and CCAAT/enhancer binding protein ${\alpha}$ (C/EBP ${\alpha}$). In addition, LEAO inactivated PI3K/Akt signaling and its downstream factors that promote adipogenesis by inducing the expression of PPAR ${\gamma}$. LEAO also activated ${\beta}$-catenin signaling, which prevents the adipogenic program by suppressing the expression of PPAR ${\gamma}$. Therefore, we found that treatment with LEAO is effective for attenuating adipogenesis in 3T3-L1 cells. Consequently, these findings suggest that LEAO has the potential to be used as a therapeutic agent for preventing obesity.

Anti-Obesity and Inhibitory Effect of Lipid Accumulation of The Cone of Pinus rigida × Pinus taeda in 3T3-L1 Cells

  • Da-Yoon Lee;Tae-Won Jang;So-Yeon Han;Seo-Yoon Park;Woo-Jin Oh;Jae-Ho Park
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2023년도 임시총회 및 춘계학술대회
    • /
    • pp.55-55
    • /
    • 2023
  • With the COVID-19 pandemic, there is increasing interest in anti-obesity strategies. According to the National Statistical Office, the obesity rate in Korea was 38.3% in 2020 and 37.1% in 2021. Obesity is a risk factor for several severe diseases, including stroke, heart disease, type 2 diabetes, and certain types of cancer. Pinus rigida × Pinus taeda is a hybrid of Pinus rigida Mill and Pinus taeda Linn, and its cones are considered a by-product. Although previous studies have investigated their pharmacological effects on antioxidant activity and protection against oxidative DNA damage, few researchers have explored their potential as functional natural materials. Therefore, we evaluated the anti-obesity effects of the cone of ethyl acetate fraction of P. rigida × P. taeda (ERT), specifically its ability to inhibit lipid accumulation. Our analysis showed that ERT contains phytochemicals (catechin and caffeic acid) which are known to improve immune function and inhibit cell damage. ERT inhibited lipid droplet accumulation at the cellular levels through Oil Red O staining. Furthermore, ERT suppressed the expression of adipogenic transcription factors (PPARγ and CEBP/α) as well as downstream lipogenic target genes (FAS and SREBP-1) thereby inhibiting adipogenesis. ERT also down-regulated key adipogenic markers, including aP2α, while inducing the phosphorylation of AMPK. It has been reported that PPARγ and CEBP/α are expressed in the early stages of adipose differentiation, while SREBP-1 is expressed in the late stage. Therefore, our findings suggest that ERT activates AMPK signaling pathways, which inhibits adipogenic transcription factors (PPARγ, C/EBPα, and SREBP1) and lipogenic genes (FAS and aP2α), thereby blocking lipid accumulation and preventing obesity and related disorders. ERT showed potential as a new resource for developing a functional material for anti-obesity agents.

  • PDF