• Title/Summary/Keyword: Adipogenic Differentiation

Search Result 273, Processing Time 0.022 seconds

Effect of Sargassum micracanthum extract on Lipid Accumulation and Reactive Oxygen Species (ROS) Production during Differentiation of 3T3-L1 Preadipocytes (3T3-L1 세포분화 중 지방축적 및 ROS 생성에 대한 잔가시 모자반 추출물의 효과)

  • Lee, Young-Jun;Yoon, Bo-Ra;Choi, Hyeon-Son;Lee, Boo-Yong;Lee, Ok-Hwan
    • Food Science and Preservation
    • /
    • v.19 no.3
    • /
    • pp.455-461
    • /
    • 2012
  • Obesity, a strong risk factor for the development of chronic diseases, is characterized by an increase in the number and size of adipocytes differentiated from precursor cells, preadipocytes. Recent research suggests that increased reactive oxygen species (ROS) production in 3T3-L1 adipocyte facilitates adipocyte differentiation and fat accumulation. This study was to investigate whether reduced ROS production by Sargassum micracanthum extract (SME) could protect the development of obesity through inhibition of adipogenesis. 3T3-L1 preadipocytes were treated SME for up to 8 days following standard induction of differentiation. The extent of differentiation reflected by amount of lipid accumulation and ROS production was determined by Oil red O staining and nitroblue tetrazolium (NBT) assay. Treatment of SME significantly inhibited ROS production and adipocyte differentiation that is depend on down regulation of NADPH oxidase 4 (NOX4), a major ROS generator, and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein alpha ($C/EBP{\alpha}$), a key adipogenic transcription factor. These results indicate that SME can inhibit adipogenesis through a reduced ROS level that involves down-regulation of NOX4 expression or via modulation of adipogenic transcription factor.

Effects of Garcinia cambogia Extract on the Adipogenic Differentiation and Lipotoxicity (가르시니아 캄보지아 추출물의 지방세포 분화 및 지방 독성에 미치는 영향)

  • Kang, Eun Sil;Ham, Sun Ah;Hwang, Jung Seok;Lee, Chang-Kwon;Seo, Han Geuk
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.411-416
    • /
    • 2013
  • This study aimed to examine the mechanisms underlying the effects of Garcinia cambogia extract on the adipogenic differentiation of 3T3-L1 cells and long-chain saturated fatty acid-induced lipotoxicity of HepG2 cells. 3T3-L1 preadipocytes, mouse embryonic fibroblast-adipose like cell line, were treated with MDI solution (0.5 mM IBMX, 1 ${\mu}M$ dexamethasone, 10 ${\mu}g/mL$ insulin) to generate a cellular model of adipocyte differentiation. Using this cellular model, the anti-obesity effect of Garcinia cambogia extract was evaluated. MDI-induced lipid accumulation and expression of adipogenesis-related genes were detected by Oil red O staining, Nile Red staining, and Western blot analysis. Effects Garcinia cambogia extract on palmitate-induced lipotoxicity was also analyzed by MTT assay, LDH release, and DAPI staining in HepG2 cells. Garcinia cambogia extract significantly suppressed the adipogenic differentiation of preadipocytes and intracellular lipid accumulation in the differentiating adipocytes. Garcinia cambogia extract also markedly inhibited the expression of peroxisome proliferator- activated receptor ${\gamma}2$ ($PPAR{\gamma}2$), CCAT/enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$), and adipocyte protein aP2 (aP2). In addition, Garcinia cambogia extract significantly attenuated palmitate-induced lipotoxicity in HepG2 cells. Palmitateinduced cellular damage and reactive aldehydes were also significantly reduced in the presence of Garcinia cambogia extract. These findings suggest that the Garcinia cambogia extract inhibits the adipogenic differentiation of 3T3-L1 preadipocytes, probably by regulating the expression of multiple genes associated with adipogenesis such as $PPAR{\gamma}2$, $C/EBP{\alpha}$, aP2, and thereby modulating fatty acid-induced lipotoxicity to reduce cellular injury in hepatocytes.

Osteoblast differentiation of human bone marrow stromal cells (hBMSC) according to age for bone tissue engineering (조직공학 재생골을 위한 연구에서 사람 골수 기원 간엽줄기세포의 나이에 따른 조골세포 분화능에 관한 연구)

  • Song, Gin-Ah;Ryoo, Hyun-Mo;Choi, Jin-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.4
    • /
    • pp.243-249
    • /
    • 2010
  • Tissue engineered bone (TEB) can replace an autogenous bone graft requiring an secondary operation site as well as avoid complications like inflammation or infection from xenogenic or synthetic bone graft. Adult mesenchymal stem cells (MSC) for TEB are considered to have various ranges of differentiation capacity or multipotency by the donor site and age. This study examined the effect of age on proliferation capacity, differentiation capacity and bone morphogenetic protein-2 (BMP-2) responsiveness of human bone marrow stromal cells (hBMSC) according to the age. In addition, to evaluate the effect on enhancement for osteoblast differentiation, the hBMSC were treated with Trichostatin A (TSA) and 5-Azacitidine (5-AZC) which was HDAC inhibitors and methyltransferase inhibitors respectively affecting chromatin remodeling temporarily and reversibly. The young and old group of hBMSC obtained from the iliac crest from total 9 healthy patients, showed similar proliferation capacity. Cell surface markers such as CD34, CD45, CD90 and CD105 showed uniform expression regardless of age. However, the young group showed more prominent transdifferentiation capacity with adipogenic differentiation. The osteoblast differentiation capacity or BMP responsiveness was low and similar between young and old group. TSA and 5-AZC showed potential for enhancing the BMP effect on osteoblast differentiation by increasing the expression level of osteogenic master gene, such as DLX5, ALP. More study will be needed to determine the positive effect of the reversible function of HDAC inhibitors or methyltransferase inhibitors on enhancing the low osteoblast differentiation capacity of hBMSC.

Anti-adipogenic Effect of Undaria pinnatifida Extracts by Ethanol in 3T3-L1 Adipocytes (미역 에탄올 추출물이 지방세포 형성과정에 미치는 영향)

  • Kim, Hye-Jin;Kang, Chang-Han;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1052-1056
    • /
    • 2012
  • Undaria pinnatifada has been used as a natural diet food with few calories and as a source of iodine. Even though U. pinnatifida has been regarded as a diet food, the mechanisms of its inhibitory effects on adipocyte differentiation and the accumulation of fat in adipocytes are poorly understood. In this study, the effect and mechanism of U. pinnatifida ethanol extract on 3T3-L1 differentiation into adipocytes were investigated. The effects of U. pinnatifida ethanol extract on cell viability and the anti-adipogenic effect were investigated via MTT assay, Oil red O staining, RT-PCR, and western blot. The U. pinnatifida ethanol extract did not show toxicity up to a concentration of 50 ${\mu}g/ml$. The addition of U. pinnatifida ethanol extract decreased triglyceride contents by 40% when 50 ${\mu}g/ml$ of U. pinnatifida ethanol extract was added during 3T3-L1 differentiation and adipocyte triglyceride formation. The transcription and expression of peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$), leptin, and hormone-sensitive lipase (HSL) as adipocyte-specific proteins were determined by RT-PCR and western blot. The overexpression of $PPAR{\gamma}$ could accelerate adipocyte differentiation. Also, leptin was secreted for triglyceride accumulation in the adipocytes and the increase of adipocyte cell size. Thus, $PPAR{\gamma}$ and leptin were used as indicators of obesity. $PPAR{\gamma}$ and leptin were repressed by the increased addition of U. pinnatifida ethanol extract. This indicates that U. pinnatifida was effective as an anti-obesity agent by repressing the differentiation of 3T3-L1 into adipocytes and inhibiting triglyceride formation in adipocytes.

Inhibitory Effects of Marine Algae Extract on Adipocyte Differentiation and Pancreatic Lipase Activity

  • Kim, Eun-Sil;Lee, Kyoung-Jin;Oh, Kyoung-Hee;Ahn, Jong-Hoon;Kim, Seon-Beom;Liu, Qing;Hwang, Bang-Yeon;Lee, Mi-Kyeong
    • Natural Product Sciences
    • /
    • v.18 no.3
    • /
    • pp.153-157
    • /
    • 2012
  • Obesity, which is characterized by excessive fat accumulation in adipose tissues, occurs by fat absorption by lipase and sequential fat accumulation in adipocyte through adipocyte differentiation. Thus, inhibition of pancreatic lipase activity and adipocyte differentiation would be crucial for the prevention and progression of obesity. In the present study, we attempted to evaluate anti-adipogenic activity of several algae extracts employing preadipocytes cell line, 3T3-L1 as an in vitro assay system. The effects on pancreatic lipase activity in vitro were also evaluated. Total methanolic extracts of Cladophora wrightiana and Costaria costata showed significant inhibitory activity on adipocyte differentiation as assessed by measuring fat accumulation using Oil Red O staining. Related to pancreatic lipase, C. wrightiana and Padina arborescens showed significant inhibition. Further fractionation of C. wrightiana, which showed the most potent activity, suggested that $CHCl_3$ and n-BuOH fraction are responsible for adipocyte differentiation inhibition, whereas n-BuOH and $H_2O$ fraction for pancreatic lipase inhibition. Our study also demonstrated that n-BuOH fraction was effective both in early and middle stage of differentiation whereas $CHCl_3$ fraction was effective only in early stage of differentiation. Taken together, algae might be new candidates in the development of obesity treatment.

Differentiation and characteristics of undifferentiated mesenchymal stem cells originating from adult premolar periodontal ligaments

  • Kim, Seong Sik;Kwon, Dae-Woo;Im, Insook;Kim, Yong-Deok;Hwang, Dae-Seok;Holliday, L. Shannon;Donatelli, Richard E.;Son, Woo-Sung;Jun, Eun-Sook
    • The korean journal of orthodontics
    • /
    • v.42 no.6
    • /
    • pp.307-317
    • /
    • 2012
  • Objective: The purpose of this study was to investigate the isolation and characterization of multipotent human periodontal ligament (PDL) stem cells and to assess their ability to differentiate into bone, cartilage, and adipose tissue. Methods: PDL stem cells were isolated from 7 extracted human premolar teeth. Human PDL cells were expanded in culture, stained using anti-CD29, -CD34, -CD44, and -STRO-1 antibodies, and sorted by fluorescent activated cell sorting (FACS). Gingival fibroblasts (GFs) served as a positive control. PDL stem cells and GFs were cultured using standard conditions conducive for osteogenic, chondrogenic, or adipogenic differentiation. Results: An average of $152.8{\pm}27.6$ colony-forming units was present at day 7 in cultures of PDL stem cells. At day 4, PDL stem cells exhibited a significant increase in proliferation (p < 0.05), reaching nearly double the proliferation rate of GFs. About $5.6{\pm}4.5%$ of cells in human PDL tissues were strongly STRO-1-positive. In osteogenic cultures, calcium nodules were observed by day 21 in PDL stem cells, which showed more intense calcium staining than GF cultures. In adipogenic cultures, both cell populations showed positive Oil Red O staining by day 21. Additionally, in chondrogenic cultures, PDL stem cells expressed collagen type II by day 21. Conclusions: The PDL contains multipotent stem cells that have the potential to differentiate into osteoblasts, chondrocytes, and adipocytes. This adult PDL stem cell population can be utilized as potential sources of PDL in tissue engineering applications.

The Effect of Crataegi Fructus Pharmacopuncture on Adipocyte Metabolism (산사약침이 지방세포 대사에 미치는 영향)

  • Won, Seung-Hwan;Kwon, Ki-Rok;Rhim, Tae-Jin;Kim, Dong-Heui
    • Journal of Pharmacopuncture
    • /
    • v.11 no.2
    • /
    • pp.63-73
    • /
    • 2008
  • Objectives The purpose of this study is to investigate the effects of Crataegi Fructus Pharmacopuncture(CFP) on the adipogenesis in 3T3-L1 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods Inhibiton of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 3days in the absence or presence of CFP ranging from 0.01 to 1mg/mL. The effect of CFP on adipogenesis was examined by measuring GPDH activity and by Oil Red O staining. Mature adipocytes from rat epididymal fat pad was incubated with CFP ranging from 0.01 to 1mg/mL for 3 hrs. The effect of CFP on lipolysis was examined by measuring free glycerol released. Fat tissue from pig skin was injected with CFP ranging from 0.1 to 10mg/mL to examine the effect of CFP on histological changes under light microscopy. Results The following results were obtained from present study on adipogenesis of preadipocytes, lipolysis of adipocytes and histological changes in fat tissue. 1. Crataegi Fructus Pharmacopuncture inhibited adipogenic differentiation at the concentration of 1.0mg/mL. 2. Crataegi Fructus Pharmacopuncture decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH) at the concentration of 0.1mg/mL. 3. Crataegi Fructus Pharmacopuncture ok. lipolysis at the concentration of 0.1mg/ml. 4. Crataegi Fructus Pharmacopuncture ranging 0.1 to 10mg/mL failed to exert lysis of cell membrane in porcine fat tissue. Conclusions These results suggest that Crataegi Fructus Pharmacopuncture at relatively high concentration inhibited adipogenesis and increased lipolysis of adipocytes. However, Crataegi Fructus Pharmacopuncture didn't exert any effect on lysis of cell membrane in fat tissue.

Identification of stemness and differentially expressed genes in human cementum-derived cells

  • Lee, EunHye;Kim, Young-Sung;Lee, Yong-Moo;Kim, Won-Kyung;Lee, Young-Kyoo;Kim, Su-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.5
    • /
    • pp.329-341
    • /
    • 2021
  • Purpose: Periodontal treatment aims at complete regeneration of the periodontium, and developing strategies for periodontal regeneration requires a deep understanding of the tissues composing the periodontium. In the present study, the stemness characteristics and gene expression profiles of cementum-derived cells (CDCs) were investigated and compared with previously established human stem cells. Candidate marker proteins for CDCs were also explored. Methods: Periodontal ligament stem cells (PDLSCs), pulp stem cells (PULPSCs), and CDCs were isolated and cultured from extracted human mandibular third molars. Human bone marrow stem cells (BMSCs) were used as a positive control. To identify the stemness of CDCs, cell differentiation (osteogenic, adipogenic, and chondrogenic) and surface antigens were evaluated through flow cytometry. The expression of cementum protein 1 (CEMP1) and cementum attachment protein (CAP) was investigated to explore marker proteins for CDCs through reverse-transcription polymerase chain reaction. To compare the gene expression profiles of the 4 cell types, mRNA and miRNA microarray analysis of 10 samples of BMSCs (n=1), PDLSCs (n=3), PULPSCs (n=3), and CDCs (n=3) were performed. Results: The expression of mesenchymal stem cell markers with a concomitant absence of hematopoietic markers was observed in PDLSCs, PULPSCs, CDCs and BMSCs. All 4 cell populations also showed differentiation into osteogenic, adipogenic, and chondrogenic lineages. CEMP1 was strongly expressed in CDCs, while it was weakly detected in the other 3 cell populations. Meanwhile, CAP was not found in any of the 4 cell populations. The mRNA and miRNA microarray analysis showed that 14 mRNA genes and 4 miRNA genes were differentially expressed in CDCs vs. PDLSCs and PULPSCs. Conclusions: Within the limitations of the study, CDCs seem to have stemness and preferentially express CEMP1. Moreover, there were several up- or down-regulated genes in CDCs vs. PDLSCs, PULPSCs, and BMSCs and these genes could be candidate marker proteins of CDCs.

Identification of candidate proteins regulated by long-term caloric restriction and feed efficiency in longissimus dorsi muscle in Korean native steer

  • Jung, Usuk;Kim, Minjeong;Wang, Tao;Lee, Jae-Sung;Seo, Seongwon;Lee, Hong-Gu
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.330-342
    • /
    • 2022
  • We aimed to investigate candidate proteins related to long-term caloric restriction and feed efficiency in bovine longissimus dorsi muscle (LM). A total of 31 Korean native steers were randomly distributed to ad libitum (n = 16) or caloric restriction group (n = 15) to conduct two feeding trials for 13 mon. In the first trial (10-18 mon of age), steers were fed with 100% ad libitum (NEg = 0.63 Mcal/kg) or caloric restriction (80% of the previous day's feed intake of ad libitum group). In the second trial (18-23 mon of age), the energy value of 100% ad libitum diet was 1.13 Mcal/kg NEg and those in caloric restriction group diet was 0.72 Mcal/kg NEg. At the endpoint of this experiment, in each group, 6 animals were selected with high (n = 3) or low feed efficiency (n = 3) to collect muscle tissue samples (6 animals/group). From muscle tissues of 23 mo of age, we excavated 9 and 12 differentially expressed (two-fold or more) proteins in a nutritional group and feed efficiency group using two-dimensional electrophoresis, respectively. Of these proteins, heat shock protein beta-6 was up-regulated in both the caloric restriction and the low feed efficiency group. In bovine embryonic fibroblasts, the mRNA expression of heat shock protein beta-6 increased after adipogenic differentiation, however, decreased after myogenic differentiation. Our data provide that heat shock protein beta-6 may be an adipogenic protein involved in the mechanism of caloric restriction and feed efficiency in the LM of the steer.

Differential Action of trans-10, cis-12 Conjugated Linoleic Acid on Adipocyte Differentiation of Ovine and 3T3-L1 Preadipocytes

  • Iga, T.;Satoh, T.;Yamamoto, S.;Fukui, K.;Song, S.H.;Choi, K.C.;Roh, S.G.;Sasaki, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1566-1573
    • /
    • 2009
  • Trans-10, cis-12 conjugated linoleic acid (CLA) has been reported to inhibit the adipocyte differentiation of preadipocytes in non-ruminant animals (mice, rat, and human). However, the effects of trans-10, cis-12 CLA have not been clear in ruminants. The objective of this study was to investigate the effects of trans-10, cis-12 CLA on adipocyte differentiation of ovine preadipocytes. Differentiation of these preadipocytes was facilitated by treatment with trans-10, cis-12 CLA. Trans-10, cis-12 CLA increased the number and size of oil red O-stainable lipid drops as well as the levels of GPDH activity. PPAR-$\gamma{2}$ and adipophilin mRNA, adipogenic marker genes, were increased by treatment with trans-10, cis-12 CLA. This result was different from that observed with 3T3-L1 preadipocytes, a clonal cell line derived from rodents. Furthermore, trans-10, cis-12 CLA alone induced the adipocyte differentiation of ovine preadipocytes in differentiation-induction medium without troglitazone. These results suggest that CLA is an inducer and regulator in adipocyte differentiation of ovine preadipocytes, with species differences between ovine and rodent preadipocytes.