• Title/Summary/Keyword: Adiabatic compression

Search Result 53, Processing Time 0.018 seconds

Experimental Study on Watertightness Properties of Concrete Using Fluosilicates Based Composite (규불화염계 복합 조성물을 사용한 콘크리트의 수밀특성에 관한 실험적 연구)

  • Joung, Won-Seoup;Park, Dong-Su;Kwon, Ki-Joo;Kim, Joung-Woo;Kim, Do-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.429-432
    • /
    • 2008
  • Large area members such as foundation concrete of underground structures in power plants have an effect on structural stability and durability of the structure due to danger of crack occurrence and shrinkage crack that occur owing to the difference of temperature by heat of hydration between inside and outside of the members at initial age. And a construction for waterproofness is performed additionally to protect marine structures from osmosis of seawater because the structures adjoin below the surface of sea. So, if a rise of the heat of hydration, crack, and corrosion of bars are controled effectively using a composite such as fluosilicate salt in concrete production process of a initial construction, expenses are cut down and construction hours are reduced by securing durability through improvement of watertightness. The property tests of adiabatic temperature by hydration are carried out at initial age about standard concrete and test concrete using a fluosilicate salt composite to evaluate an effect on improvement of watertightness for concrete structures in this study. And the experiments such as a permeability test of hardened concrete, a water absorption test, a compression strength test and a elongation test are carried out and the results from these are described.

  • PDF

WRF Sensitivity Experiments on the Formation of the Convergent Cloud Band in Relation to the Orographic Effect of the Korean Peninsula (한반도 지형이 대상수렴운의 생성에 미치는 영향에 관한 WRF 민감도 실험)

  • Kim, Yu-Jin;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.51-66
    • /
    • 2015
  • This study was conducted to perform various sensitivity experiments using WRF (Weather Research and Forecasting) model in order to determine the effects of terrains of the Korean Peninsula and the land-sea thermal contrast on the formation and development of the convergent cloud band for the cases of 1 February 2012. The sensitivity experiments consist of the following five ones: CNTL experiment (control experiment), and TMBT experiment, BDMT experiment and ALL experiment that set the terrain altitude of Taeback Mountains and Northern mountain complex as zero, respectively, and the altitude of the above-mentioned two mountains as zero, and LANDSEA experiment that set to change the Korean Peninsula into sea in order to find out the land-sea thermal contrast effect. These experiment results showed that a cold air current stemming from the Siberian high pressure met the group of northern mountains with high topography altitude and was separated into two air currents. These two separated air currents met each other again on the Middle and Northern East Sea, downstream of the group of northern mountains and converged finally, creating the convergent cloud band. And these experiments suggested that the convergent cloud band located on the Middle and Northern East Sea, and the cloud band lying on the southern East sea to the coastal waters of the Japanese Island facing the East Sea, were generated and developed by different dynamical mechanisms. Also it was found that the topography of Taeback Mountains created a warm air advection region due to temperature rise by adiabatic compression near the coastal waters of Yeongdong Region, downstream of the mountains. In conclusion, these experiment results clearly showed that the most essential factor having an effect on the generation and development of the convergent cloud band was the topography effect of the northern mountain complex, and that the land-sea thermal contrast effect was insignificant.

A Study on the Development of Non-PC High-Early-Strength Concrete Without Steam Curing (증기양생이 불필요한 PC부재용 조강형 콘크리트 개발에 관한 연구)

  • Jun, Woo-Chul;Lee, Ji-Hwan;Park, Hee-Gon;Lee, Jae-Sam;Kim, Kyung-Min;Cho, In-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.156-162
    • /
    • 2014
  • This study aims to develop a rapidly hardening type of concrete to achieve the removal of form intensity (more than 10MPa) using the method of curing at room temperature in order to solve some economic environmental problems by omitting the steam curing process involved in producing PC (Precast Concrete). Therefore, this study evaluated a rapidly hardening cement containing a high amunt of C3S, which is very responsive in expressing early intensity, and a rapidly hardening type of concrete which uses some hardening accelerator to increase thehydration reaction of $C_3S$. The results of the experiment on concrete using some hardening accelerator are asfollows. In the slump flow experiment for identifying the liquidity and the air test, the desired values were met. The compression strength showed rapid expression response by 12 hours, and met the desired value within 6~9 hours. Its drying shrinkage value and Autogenous shrinkage value were measured as below ($-754.5{\times}10^{-6}$),and satisfied the requirements. In addition, in the Semi-Adiabatic Temperature Test, it was found that the concrete rose to its peak temperature within 24 hours and then its temperature dropped.