• 제목/요약/키워드: Adhesive-bonding

Search Result 768, Processing Time 0.022 seconds

A Study on Bond Strength of Procelain with Non Precious Alloy (도재전장관용 비귀금속합금과 도재의 융착결합에 관한 연구)

  • Kang, Sung-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.18 no.1
    • /
    • pp.49-57
    • /
    • 1980
  • The adhesive mechanisms on the metal-ceramic restorations have been reported to be mechanical interlocking, chemical bonding, compressive force, and Van der Waal's force, etc. Of these, the mechanical interlocking and chemical bonding forces are thought to affect the adhesive force between Ni-Cr alloy and porcelain. This study investigates the adhesion of Ni-Cr alloy to porcelain according to surface treatment. For this purpose, the following experiments were made; The compositions of Ni-Cr alloy as cast by emission spectrograph, and the oxides produced on Ni-Cr alloy during degassing at $1850^{\circ}F$ for 30 minutes in air and in vacuum were analyzed by X-ray diffractograph. The metal phases of Ni-Cr alloy were observed according to porcelain-baking cyclic heat treatment by photo microscope and the distribution and the shift of elements of Ni-Cr alloy and porcelain and the failure phases between Ni-Cr alloy and porcelain by scanning electron microscope. The adhesive force between Ni-Cr alloy and porcelain was measured according to surface treatment with oxidization and roughening by Instron Universal Testing Machine. Results were as follows; 1. The metal phases of Ni-Cr alloy as cast and degassing state showed the enlarged and fused core, but when subjected to porcelain-baking cyclic heat treatment, showed a dendrite growing. 2. The kinds of metal oxides produced on Ni-Cr alloy during degassing were found to be NiO and $Cr_2O_3$. 3. The distribution of elements at the interface of Ni-Cr alloy and porcelain in degassing state showed demarcation line, but in roughening state, showed mechanical interlocking phase. 4. The shift of elements at the interface occurred in both states, but the shift amount was found to be larger in roughening than in degassing. 5. The adhesive force between Ni-Cr alloy and porcelain was found to be $3.45{\pm}0.93kg/mm^2$, in degassing and $3.82{\pm}0.99kg/mm^2$, in roughening. 6. The failure phase between Ni-Cr alloy and porcelain showed the mixed type failure.

  • PDF

Strength of Composite Single-Lap Bonded Joints with Various Manufacturing Processes for Aircraft Application (항공용 복합재 단일겹침 접착 체결부의 제작공정에 따른 강도 연구)

  • Song, Min-Gyu;Kweon, Jin-Hwe;Choi, Jin-Ho;Kim, Hyo-Jin;Song, Min-Hwan;Shin, Sang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.751-758
    • /
    • 2009
  • Failure strengths of composite single-lap adhesive joints were investigated with various parameters such as manufacturing method, overlap length and adherend thickness. A total of 335 single-lap joint specimens were tested under tension. Specimens were fabricated with 4 different manufacturing processes; cocuring without and with adhesive, secondary bonding and co-bonding. Each manufacturing process has 5 different overlap lengths and 4 different thicknesses, respectively. As expected, failure strength is higher in thicker adherend joints and lower in larger overlap length specimens. Interesting result is that the secondary bonded joints show the higher strength than the cobonded and cocured joints with adhesive, and give close or even higher strength compared with non-adhesive cocured case.

Shear Performance of PUR Adhesive in Cross Laminating of Red Pine

  • Kim, Hyung-Kun;Oh, Jung-Kwon;Jeong, Gi-Young;Yeo, Hwan-Myeong;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.158-163
    • /
    • 2013
  • Cross laminated timber (CLT) has been an rising issue as a promising building material replacing steel-concrete in mid story rise construction. But, there was no specific standard for CLT because it had been developed in industrial section. Recently, new draft for requirements of CLT was proposed by EN which suggested to evaluate the performance of adhesive in CLT by the same method as glulam. But, it has been reported that shear performance of cross laminated timber is governed by rolling shear. Therefore, block shear tests were carried out to compare parallel to grain laminating and cross laminating using commercial one component PUR (Poly urethane resin). The result showed that the current glulam standard for evaluating bonding performance is not appropriate for CLT. Beacause shear strength of cross laminating decreased to 1/3 of parallel to grain laminating and this strength was representing shear performance of wood itself not the bond. However, cross laminating showed no significant effect on wood failure. Thus, wood failure can be used as a requirement of CLT bonding. Based on the results, cross laminating effect should be included when evaluating adhesive performance of CLT correctly and should be considered as an important factor.

EFFECT OF WETTING CONDITION ON BONDING OF RESIN CEMENT TO DENTIN (상아질 표면의 건조에 따른 습윤상태가 레진세멘트의 접착에 미치는 영향)

  • Son, Kang-Ha;Park, Jin-Hoon;Cho, Kyeu-Zeung
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.97-112
    • /
    • 1995
  • The purpose of this study was to evaluate the effect of wetting condition made by drying time on bonding of resin cement to dentin. Freshly extracted bovine teeth were grinded to expose flat dentin surfaces. After the exposed dentin surfaces were treated with pretreatment agents and water rinse, each wetting condition of dentin surfaces was made according to drying times and methods including slight blow bry for I-second by air syringe, blow dry for 20-second by air syringe, and 12-hour dry in desiccator respectively. and then, previously made composite resin specimens were bonded onto each conditioned dentin surface of the specimen using Panavia-21(Kuraray Co.), Bistite(Tokuso Co.), and Choice(use with All bond-2, Bisco Inc.) resin cement according as manufacturer's instruction. Bonded specimens were stored in $37^{\circ}C$ distilled water for 24 hours, then the tensile bond strength was measured, cohesive failure rate was calculated, and fractured dentin surfaces and acrylic rod sides were examined under scanning electron microscope. The result were as follows ; In the group of bonding with Panavia-21 resin cement, higher tensile bond strength was seen in 12-hour dry group than in I-second and 20-second dry group(p<0.01). In the group of bonding with Bistite resin cement, higher tensile bond strength was seen in 1-second dry group than in 20-second and 12-hour dry group(p<0.01). In the group of bonding with Choice resin cement, no significant differences of bond strength under given drying time were seen. Cohesive failure rates derived from the groups of bonding with Panavia-21 and Choice resin cement were increased with the increase of tensile bond strength in each drying time. On SEM examination of fractured surface, adhesive failure mode with fractured resin tags was mostly seen in wet condition with I-second drying time in the group of bonding with Panavia-21 resin cement, mixed failure mode with shortened and fractured resin tag was seen in the group of bonding with Bistite resin cement, and regardless of drying time, and cohesive-adhesive mixed failure mode with fracture of 'Hollow' typed resin tags was mainly seen in the group of bonding with Choice resin cement.

  • PDF

IN VITRO MICRO-SHEAR BOND STRENGTH OF FIVE COMPOSITE RESINS TO DENTIN WITH FIVE DIFFERENT DENTIN ADHESIVES (미세-전단 결합 강도 시험을 이용한 상아질 접착제와 수복용 복합 레진의 호환성에 관한 연구)

  • Chung, Jin-Ho;Roh, Byoung-Duck
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.4
    • /
    • pp.353-364
    • /
    • 2004
  • The purpose of this study was to compare and to evaluate the combination use of 5 kinds of dentin adhesive systems and 5 kinds of composite resins using micro-shear bond test. Five adhesive systems (Prime & Bond NT (PBN). Onecoat bond (OC), Excite (EX), Syntac (SY), Clearfil SE bond (CS)) and five composite resins (Spectrum (SP), Synergy Compact (SC), Tetric Ceram (TC), Clearfil AP-X (CA), Z100 (Z1)) were used for this study ($5{\;}{\times}{\;}5{\;}={\;}25group$, n =14/group). The slices of horizontally sectioned human tooth were bonded with each bonding system and each composite resin, and tested by a micro-shear bond strength test. These results were analyzed statistically. The mean micro-shear bond strength of dentin adhesive systems were in order of CS (22.642 MPa), SY (18.368 MPa), EX (14.599 MPa). OC (13.702 MPa). PBN (12.762 MPa). The mean bond strength of self-etching primer system group (CS, SY) in dentin was higher than that of self-priming adhesive system groups (PBN, EX, OC) significantly (P<0.05). The mean bond strength of composite resins was in order of SP (19.008 MPa), CA (17.532 MPa). SC (15.787 MPa), TC (15.068 MPa). Z1 (14.678 MPa). Micro-shear bond strength of SP was stronger than those of other composite resins significantly (P < 0.05). And those of TC and Z1 were weaker than other composite resins significantly (P < 0.05). No difference was found in micro-shear bond strength of composite resin in self-etching primer adhesive system groups (CS, SY) statistically. However, there was significant difference of micro-shear bond strength of composite resin groups in self-priming adhesive systems group (PBN, EX, OC). The combination of composite resin and dentin adhesive system recommended by manufacturer did not represent positive correlation. It didn't seem to be a significant factor.

Bonding Strength of Ozonized Soybean Oil-based Modified pMDI Adhesive Hardened at High and Medium Temperature (오존산화 콩기름 변성 pMDI 접착제의 고온 및 중온 경화 접착력)

  • Lee, Eung-Su;Kang, Chan-Young;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.541-546
    • /
    • 2010
  • This study was to investigate the dry bond strengths of the plywoods manufactured with 3 hours ozonized soybean oil (SBO)/polymeric methylene diphenyl diisocyanate (pMDI) adhesive at mid and high curing temperature. In results of the dry bonding strengths of the 3 hrs-ozonized SBO mixed with pMDI at high curing temperature were respectively the strengths of weight ratio of 3hrs-ozonized SBO : pMDI, 1 : 0.5, 4.74 kgf/$cm^2$, 1 : 0.75, 7.14 kgf/$cm^2$ 1 : 1, 9.29 kgf/$cm^2$, 1 : 2, 16.53 kgf/$cm^2$, 1 : 3, 17.42 kgf/$cm^2$, and 1 : 4, 16.75 kgf/$cm^2$. Therefore, it was found that the equivalent ratio was formed approximately between 3 hrs-ozonized SBO : pMDI 1 : 2 and 1 : 3. The dry bonding strengths of the 3hrs-ozonized SBO mixed with pMDI at medium curing temperature were respectively the strengths of weight ratio of 3 hrs-ozonized SBO : pMDI, 1 : 0.5, 3.16 kgf/$cm^2$, 1 : 0.75, 6.13 kgf/$cm^2$ 1 : 1, 8.18 kgf/$cm^2$, 1 : 2, 11.82 kgf/$cm^2$. In this experiment the higher bonding strength at high curing temperature was shown approximately between 3 hrs-ozonized SBO : pMDI 1 : 2 and 1 : 3. If this wood adhesive is used at high curing temperature, it is possibile to bond the plywoods.

A comparative study on bond strength and adhesive failure pattern in bracket bonding with self-etching primer (Self-etching Primer를 이용한 교정용 브라켓 부착시 전단결합강도와 파절양상에 관한 비교연구)

  • Kim, You-Kyoung;Lee, Jin-Woo;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.34 no.4 s.105
    • /
    • pp.325-332
    • /
    • 2004
  • A self-etching primer that combines the etchant and primer in one chemical compound saves time and should be mote cost-effective to the clinician and patient. The purpose of this study was to evaluate the clinical effectiveness of a self-etching primer by measuring shear bond strengths according to various conditions and observing adhesive failure patterns. For this Investigation, 120 upper and lower premolars extracted for orthodontic purposes were used and randomly divided into six groups of twenty teeth each. Human premolars were embedded in a metal cylinder with orthodontic resin. Metal brackets and ceramic brackets were bonded with XT primer and self-etching primer by means of XT adhesive. Upon curing, plasma arc light and visible light were used. After bonding, the shear bond strength was tested by Instron universal testing machine, and the amount of residual adhesive that remained on the tooth after debonding was measured by stereoscope and assessed with an adhesive remnant index. The results were as fellows: 1. When brackets were bonded, if other conditions remained the same, there was no significant difference in shear bond strength due to the type of primer - either self-etching primer or XT primer. 2. When metal brackets were bonded, there was no significant difference in shear bond strength according to the source of light - plasma arc light or visible light - and type of primer. 3. There was a very significant difference in shear bond strength according to the type of brackets - metal or ceramic brackets. The shear bond strength of ceramic brackets was stronger than metal brackets. 4. When the adhesive failure patterns of metal brackets bonded with self-etching primer were observed by using the adhesive remnant index, the bond failure of the metal bracket occurred more frequently at the bracket-adhesive. The failure of the ceramic bracket, however, occurred more frequently at the enamel-adhesive interface. The adhesive failure patterns of metal brackets bonded with XT primer observed the same patterns. The above results suggest that self-etching primer can be clinically useful for bonding the brackets without fear of a decrease in shear bond strength.

The study of shear bond strength of a self-adhesive resin luting cement to dentin (상아질에 대한 자가 접착 레진 시멘트의 전단결합강도에 관한 연구)

  • In, Hee-Sun;Park, Jong-Il;Choi, Jong-In;Cho, Hye-Won;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.535-543
    • /
    • 2008
  • Purpose: The objective of this study was to compare the bonding characteristics of a new self-adhesive resin cement to dentin, which does not require bonding and conditioning procedure of the tooth surface, and conventional resin cement. The effect of phosphoric acid etching prior to application of self-adhesive resin cement on the shear bond strength was also evaluated. Material and methods: Fortyfive non-carious human adult molars extracted within 6 months were embedded in chemically cured acrylic resin. The teeth were ground with a series of SiC-papers ending with 800 grit until the flat dentin surfaces of the teeth were exposed. The teeth were randomly divided into 3 experimental groups. In group 1, self-adhesive resin cement, RelyX Unicem (3M ESPE, Seefeld, Germany) was bonded without any conditioning of teeth. In group 2, RelyX Unicem was bonded to teeth after phosphoric acid etching. For group 3, Syntac Primer (Ivoclar Vivadent AG, Schaan, Liechtenstein) was applied to the teeth before Syntac adhesive (Ivoclar Vivadent AG, Schaan, Liechtenstein) and Helibond (Ivoclar Vivadent AG, Schaan, Liechtenstein) followed by conventional resin cement, Variolink II (Ivoclar Vivadent AG, Schaan, Liechtenstein). To make a shear bond strength test model, a plastic tuble (3 mm diameter, 3 mm height) was applied to the dentin surfaces at a right angle and filled it with respective resin cement, and light-polymerized for 40 seconds. All the specimens were stored in distilled water at $37^{\circ}C$ for 24 hours before test. Universal Testing Machine (Z020, Zwick, Ulm, Germany) at a cross head speed of 1 mm/min was used to evaluate the shear bond strength. The failure sites were inspected under a magnifier and Scanning Electron Microscope. The data was analyzed with One way ANOVA and Scheffe test at ${\alpha}$= 0.05. Results: (1) The shear bond strengths to dentin of RelyX Unicem was not significantly different from those of Variolink II/Syntac. (2) Phosphoric acid etching lowered the shear bond strength of RelyX Unicem significantly. (3) Most of RelyX Unicem and Variolink II showed mixed fractures, while all the specimens of RelyX Unicem with phosphoric acid etching demonstrated adhesive failure between dentin and resin cement. Conclusion: Shear bond strength to dentin of self-adhesive resin cement is not significantly different from conventional resin cement, and phosphoric acid etching decrease the shear bond strength to dentin of self-adhesive resin cement.

Design and Performance Evaluation of Carbon Fiber/Epoxy Composite-aluminum Hybrid Wheel for Passenger Cars (자동차용 탄소섬유/에폭시 복합재료-알루미늄 하이브리드 휠 설계 및 성능평가)

  • Hong, Jin-Ho;Yoo, Seong-Hwan;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.386-391
    • /
    • 2013
  • In this paper, a carbon fiber/epoxy composite-aluminum hybrid wheel for passenger cars was suggested for better performance and a prototype was fabricated and tested. Adhesive bonding between aluminum part and a composite rim part was used, and the bonding length and thickness were determined by finite element analysis. For self alignment and the function of bonding jig the special structure with a groove and a protrusion was applied. To evaluate the performance of the hybrid wheel various FE analyses were carried out. Inner and outer molds were prepared for the composite rim part and the thermoformed composite part was bonded to the aluminum part. Vibration tests revealed that the hybrid wheel had 16% higher resonance frequency and 32% higher damping capacity with 10% weight reduction.

A TEM STUDY OF THE RESIN-DENTIN INTERDIFFUSION ZONE FORMED BY ONE-BOTTLE DENTIN ADHESIVE SYSTEMS (단일용기 상아질 접착제 처리 후 레진-상아질 경계면에 대한 투과전자현미경적 연구)

  • Yang, Dong-Woon;Park, Seong-Ho;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.2
    • /
    • pp.180-192
    • /
    • 2000
  • One bottle system was recently developed in order to simplify the clinical skills and save chair time after continuous improvements on dentin bonding agents. There has been many studies to measure the bond strength of one bottle systems but no actual work has been done on micromorphologic study of resin-dentin interdiffusion zone after one bottle system application. To evaluate the bonding patterns of various commercially available one bottle systems to dentin, observation of resin-dentin interdiffusion zone under TEM was performed. Caries-free human third molars within one month of extractions were chosen for the experiments. The molars were sectioned 1mm above the cementoenamel junction and got rid of the root portions. Crown portions of the teeth were sectioned parallel to occlusal surface so that dentin discs of 1mm in thickness were remained. 7 one bottle systems and 1 two bottle system were applied according to manufacturer's instructions and followings were the results. 1. In every experimental groups, cross bandings of collagen fiber were distinguishable and tight bon dings between the bonding agents and dentin were observed. 2. Hybrid layer was clearly observed in ONE-STEP$^{(R)}$, Prime & Bond$^{(R)}$ 2.1, Syntac$^{(R)}$ SC, MAC-BOND II groups but it was not clear in Single Bond, D-Liner Dual PLUS, ONE COAT BOND groups. 3. Electron-density of hybrid layer was uniform in pattern in MAC-BOND II, Prime & Bond$^{(R)}$ 2.1 groups but not so uniform in ONE-STEP$^{(R)}$ group. 4. Electron-dense amorphous phase in most superior layer of the resin-dentin interdiffusion zone was characteristically observed in Single Bond, Syntac$^{(R)}$ SC, ONE COAT BOND groups. It can be concluded that bondings between the dentin bonding agents and dentin can be various in pattern according to their chemical compositions and the condition during applications.

  • PDF