• Title/Summary/Keyword: Adhesive-bonding

Search Result 768, Processing Time 0.027 seconds

High-Performing Adhesive Bonding Fastening Technique For Automotive Body Structures

  • Symietz, Detlef;Lutz, Andreas
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.60-64
    • /
    • 2006
  • In modern vehicle construction the search for means of weight reduction, improving durability, increasing comfort and raising body stiffness are issues of priority to the design engineer. The intelligent usage of many materials such as high strength steel, light-alloys and plastics enables a significant vehicle weight reduction to be achieved. The classical joining techniques used in the automobile industry need to be newly-evaluated since they often do not present workable solutions for such mixed-material connections, for example aluminium/steel. Calculation/simulation methods have made progress as a key factor for broader and more cost-effective implementation of structural bonding. This will lead to reduction of spotwelds and accelerate the car development. A special focus of the paper is the use of high strength steel grades. It will be shown that adhesive bonding is a key tool for yielding the potential of advanced high strength steel for low gauging without compromising the stiffness. The latest status of adhesive development has been described. Improvements with physical strength and glass temperature as well as of process relevant properties are shown. Also the situation regarding occupational hygiene is treated, showing that by further spotweld point reduction the emission around the working area can be even lowered against the current praxis. High performing lightweight design cannot longer do without high performing crash durable adhesives.

  • PDF

Densification Characteristics of Softwood Veneers Treated by Resin Impregnation (침엽수단판의 수지함침처리에 의한 압밀화 특성)

  • 서진석
    • Journal of the Korea Furniture Society
    • /
    • v.14 no.2
    • /
    • pp.21-29
    • /
    • 2003
  • This study was carried out to investigate characteristics of plywood overlaid with softwood veneers densified by resin impregnation and compression. The resin impregnability of Korean pine veneer under atmospheric pressure soaking was greater than that of larch, and impregnability of melamine resin was slightly greater than phenolic resin. It was suggested that resin impregnation ratio was affected by density and thickness of veneer. The largest melamine resin impregnation ratio of 50.7% was obtained with 1.26mm thick Korean pine veneer, and the lowest phenolic resin impregnation ratio of 11.7% with 3.41mm thick larch veneer. Therefore, it was suggested that the vacuum-pres sure-soak treatment is required at thick larch veneer. In densifying resin-impregnated veneers, densification ratio from 13.4 to 31.2% was obtained by high pressure from 15.6 to $20.8kgf/cm^2$. Impregnation of melamine resin also showed relatively greater at densification than that of phenolic resin. So it showed the degree of densification of about 20% or greater. It was seemed that adhesive bonding strength of plywood(base panel) which was directly pressed and overlaid with resin-impregnated veneer was affected by resin tackiness after resin impregnation followed by semi-drying. In laboratory scale, melamine resin impregnation was more favorable for the development of adhesive bonding strength owing to moisture control.

  • PDF

A Study on Fracture Characteristics in Opening Mode of a DCB Specimen Using a Lightweight Material (경량 재료를 이용한 DCB 시험편의 열림 모드에서의 파손 특성에 관한 연구)

  • Kim, Jae-Won;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.42-47
    • /
    • 2021
  • Recently, many structures using lightweight materials have been developed. This study was conducted by using Al6061-T6 and carbon fiber reinforced plastic (CFRP), two common lightweight materials. In addition, the failure characteristics of an interface bonded between a single material and a heterogeneous bonding material were analyzed. The specimens bonded with CFRP and Al6061-T6 were utilized by the combination of the heterogeneous bonding material. The specimens had a double cantilevered shape and the bonding between the materials was achieved by applying a structural adhesive. The experiments were conducted in opening mode: the lower part of the samples was fixed, while their upper part was subjected to a forced displacement of 3 mm/min by using a tensile tester. Under the tested amount of strength, energy release rate, and considering the specimens' fracture characteristics in opening mode, the specimen "CFRP-Al" presented the maximum stress, followed by "Al" and "CFRP". We can hence conclude that the inhomogeneous material "CFRP-Al" is useful for the construction of lightweight structures bonded with structural adhesive.

BONDING STRENGTH OF GLASS-IOMOMER CEMENT AND COMPOSITE RESIN COMBINATION (Glass ionomer cement의 상아질 결합력에 관한 연구)

  • Um, Chung-Moon;Oilo, Gudbrand
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.633-640
    • /
    • 1994
  • The tensile bond strength to dentin was measured for three glass-ionomer cement and composite resin combinations: two light-curing glass-ionomer cements(Vitrebond and XR - Ionomer) and one traditional glass - ionomer cement(Ketac - Bond), two adhesive systems(Scotchbond, and XR - Bonding System), and a corresponding composite resin. The bond strength of this "sandwich" was also compared with that of the same cements used in bulk. Vitredbond showed a significantly higher bond strength in bulk than did the other two cements. Of the sandwiches, the XR - Iomomer and XR - Bond combination showed a bond strength significantly higher than that of the Vitrebond and Scotchbond or Ketac- bond and Scotchbond combination. The fracture of the bond was mainly adhesive for Vitrebond, cohesive for XR - Ionomer when used in bulk and adhesive - cohesive when used in a sandwich, and cohesive for Ketac-Bond.

  • PDF

Micro-shear bond strength of resin-bonding systems to cervical enamel.

  • Shimada, Y.;Kikushima, D.;Iwamoto, N.;Shimura, R.;Ide, T.;Nakaoki, Y.;Tagami, J.
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.560.1-560
    • /
    • 2001
  • To evaluate the micro-shear bond strength of current adhesive systems to cervical and mid-coronal enamel. Materials and Two commercially available resin adhesives were investigated; a self-etching primer system(Clearfil SE Bond, Kyraray) and a one-bottle adhesive system(Single Bond, 3M) intended for use with the total-etch wet-bonding technique were employed. Two regions of enamel, cervical and mid-coronal regions, were chosen from the buccal surface of extracted molars and were then bonded with each adhesive system and submitted to the micro-shear bond test.(중략)

  • PDF

A Flip Chip Process Using an Interlocking-Joint Structure Locally Surrounded by Non-conductive Adhesive (비전도성 접착제로 국부적으로 둘러싸인 인터록킹 접속구조를 이용한 플립칩 공정)

  • Choi, Jung-Yeol;Oh, Tae-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.785-792
    • /
    • 2012
  • A new flip chip structure consisting of interlocking joints locally surrounded by non-conductive adhesive was investigated in order to improve the contact resistance characteristics and prevent the parasitic capacitance increase. The average contact resistance of the interlocking joints was substantially reduced from $135m{\Omega}$ to $79m{\Omega}$ by increasing the flip chip bonding pressure from 85 MPa to 185 MPa. Improvement of the contact resistance characteristics at higher bonding pressure was attributed not only to the increased contact area between Cu chip bumps and Sn pads, but also to the severe plastic deformation of Sn pads caused during formation of the interlocking-joint structure. The parasitic capacitance increase due to the non-conductive adhesive locally surrounding the flip chip joints was estimated to be as small as 12.5%.

Patch Plate Repair Method for Steel Structures Combining Adhesives and Stud Bolts

  • Ishikawa, T.;Ikeda, T.
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1410-1419
    • /
    • 2018
  • Recently, a repair method by bonding patch plates is being applied to corroded steel structures. However, one of the issues of patch plate bonding repair is the brittle debonding of the patch plates. Generally, when the delamination of the patch plates occurs, the composite effect acting between the steel members and patch plates abruptly decreases. Therefore, to prevent the brittle debonding of the patch plates, a repair method combining an adhesive and stud bolts is proposed. Till date, tensile and compressive tests have been performed for the proposed method. In this study, plate bending tests were conducted to verify the effectiveness of this method under bending conditions. Furthermore, two types of epoxy resin-based adhesives were prepared to evaluate the effectiveness of the proposed method with different adhesive properties. The test results show that the proposed method is able to prevent the brittle debonding of the patch plates in the case of both epoxy resins.

Enhancing Structural Integrity of Composite Sandwich Beams Using Viscoelastic Bonding with Tapered Epoxy Reinforcement

  • Rajesh Lalsing Shirale;Surekha Anil Bhalchandra
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.125-137
    • /
    • 2024
  • Composite laminates are used in a wide range of applications including defense, automotive, aviation and aerospace, marine, wind energy, and recreational sporting goods. These composite beams still exhibit problems such as buckling, local deformations, and interlaminar delamination. To overcome these drawbacks, a novel viscoelastic autoclave bonding with tapered epoxy reinforcement polyurethane films is proposed. In existing laminates, compression face wrinkling and interlaminar delamination is caused in the sandwich beam. The unique viscoelastic autoclave spunbond interlayer bonding is designed to prevent face wrinkling and absorb and distribute stresses induced by external loads, thereby eliminating interlaminar delamination in the sandwich beam. Also, the existing special reinforcement causes stress concentrations, and the core is not effectively connected, which directly affects the stiffness of the beam. To address this, a novel tapered epoxy polyurethane reinforcement adhesive film is proposed, whose reinforcement thickness gradually tapers as it enters the core material. This minimizes stress concentrations at the interface, preventing excessive adhesive squeeze-out during the bonding process, and improves the stiffness of the beam. Results indicate the proposed model avoids the formation of micro cracks, interlaminar delamination, buckling, and local deformations, and effectively improves the stiffness of the beam.

Shear bond strength of composite resin to high performance polymer PEKK according to surface treatments and bonding materials

  • Lee, Ki-Sun;Shin, Myoung-Sik;Lee, Jeong-Yol;Ryu, Jae-Jun;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.350-357
    • /
    • 2017
  • PURPOSE. The object of the present study was to evaluate the shear bonding strength of composite to PEKK by applying several methods of surface treatment associated with various bonding materials. MATERIALS AND METHODS. One hundred and fifty PEKK specimens were assigned randomly to fifteen groups (n = 10) with the combination of three different surface treatments (95% sulfuric acid etching, airborne abrasion with $50{\mu}m$ alumina, and airborne abrasion with $110{\mu}m$ silica-coating alumina) and five different bonding materials (Luxatemp Glaze & Bond, Visio.link, All-Bond Universal, Single Bond Universal, and Monobond Plus with Heliobond). After surface treatment, surface roughness and contact angles were examined. Topography modifications after surface treatment were assessed with scanning electron microscopy. Resin composite was mounted on each specimen and then subjected to shear bond strength (SBS) test. SBS data were analyzed statistically using two-way ANOVA, and post-hoc Tukey's test (P<.05). RESULTS. Regardless of bonding materials, mechanical surface treatment groups yielded significantly higher shear bonding strength values than chemical surface treatment groups. Unlike other adhesives, MDP and silane containing self-etching universal adhesive (Single Bond Universal) showed an effective shear bonding strength regardless of surface treatment method. CONCLUSION. Mechanical surface treatment behaves better in terms of PEKK bonding. In addition, self-etching universal adhesive (Single Bond Universal) can be an alternative bonding material to PEKK irrespective of surface treatment method.

THE COMPARATIVE STUDY ON THE SHEARBOND STRENGTH AND THE MORPHOLOGY OF RESIN-DENTIN INTERFACE BONDED BY SEVERAL DENTINAL BONDING SYSTEM (수종의 상아질 결합체의 전단강도 및 결합부의 형태에 관한 비교연구)

  • Kim, Yun-Cheol;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.4
    • /
    • pp.867-886
    • /
    • 1996
  • The purpose of this study was to evaluate the shearbond strength and resin-dentin interface of three different dentinal bonding systems in primary and permanent teeth. Thirty extracted human primary molars and premolars, which were non-carious and free of obvious defect, were selected for this study. All specimens were divided into six groups with two groups allocated for each of the three dentinal bonding system(All-bond 2, Scotchbond Multi-Purpose, Gluma bonding system). After completion of bonding composite to dentin using each tested dentin bonding system, bond strength measurement and histological observation were performed. The results are as follows: 1. All-bond 2 and Scotchbond Multi-Purpose, A good quality hybrid layer was identified, the morphology of which could be equated with the zone of H-E and Brown-Brenn staining. In Gluma bonding system, hybrid layer was very thin, and separated from the solid polymer. 2. All-bond 2 had the highest mean shearbond strength, followed by Scotchbond Multi-Purpose and Gluma bonding system in both primary and permanent teeth. There was no statistically significant difference between All-bond 2 and Scotchbond Multi-Purpose. Statistically significant difference could be found between Gluma bonding system and the other two groups(p<0.05). 3. The fracture patterns observed were mainly the mixture of adhesive failure and dentin dettachment pattern in All-bond 2 and Scotchbond Multi-Purpose while adhesive failure prevailed in Gluma bonding system.

  • PDF