• Title/Summary/Keyword: Adhesive system

Search Result 599, Processing Time 0.027 seconds

An Analysis of Detachment Mechanism of Gecko Adhesion System using Finite Element Method (유한요소법을 이용한 게코 접착 시스템의 분리 메커니즘에 대한 해석)

  • Kim, Won-Bae;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.550-553
    • /
    • 2010
  • 본 논문에서는 seta와 spatula로 구성된 게코(gecko) 접착 시스템의 해석을 위한 새로운 adhesive beam contact model을 제시한다. adhesive contact 해석에 있어서 기존의 JKR model은 nano pillar와 같은 형태의 접촉방식의 해석에는 매우 유용하지만, seta와 같이 보(beam)의 형상을 가지는 구조물의 접촉방식의 해석에는 부적합하다. 따라서 본 연구에서는 seta와 같은 보의 형상을 가지는 접촉 시스템의 해석을 위해 adhesive beam contact model을 제시하고, 유한요소 해석을 통하여 접촉면에서의 불균일한 응력분포 상태가 분리 메커니즘에 미치는 영향에 대한 해석 결과를 제시한다. 또한 spatula의 기하학적 형상과 보의 접촉각(contact angle)등이 seta adhesion system의 분리 메커니즘(detachment mechanism)에 미치는 영향에 대한 결과를 제시한다.

  • PDF

Optimization of Biomimetic Two-level Hierarchical Adhesive System (자연모사 2층 구조 응착시스템의 최적화)

  • Kim, Tae-Wan
    • Tribology and Lubricants
    • /
    • v.26 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • Geckos have a unique ability to cling to ceilings and walls utilizing dry adhesion. Their foot pads are covered by a large number of small hairs (setae) that contain many branches per seta with a lower level of spatulae. Their fibrillar structure is the primary source of high adhesion. In this study, we construct the adhesion design database for biomimetic adhesive system. A simple idealized fibrillar structure consisting of single array of beams is modeled. The fibers are assumed as oriented cylindrical cantilever beams with spherical tip. We consider three necessary conditions; buckling, fracture and sticking of fiber structure, which constrain the allowed geometry. The adhesion analysis is performed for the attachment system in contact with rough surfaces with different s values for different main design variables-fiber radius, aspect ratio and material elastic modulus and so on. The developed adhesion design databases are useful for understanding biological systems and for guiding of fabrication of the biomimetic attachment system.

INFLUENCE OF APPLICATION METHODS OF A DENTIN ADHESIVE ON SHEAR BOND STRENGTH AND ADHESIVE PATTERN (상이질 접착제의 적용방법에 따른 전단결합강도와 접착양상에 관한 연구)

  • Park, Sung-Taek;Moon, Joo-Hoon;Cho, Young-Gon;Ohn, Yeong-Suck
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.381-391
    • /
    • 1999
  • A new 5th generation adhesive system(ONE-STEP) has been supplied which operators can apply to conditioned tooth surfaces by one simplified step. The purpose of this study was to determine whether different methods of adhesive application and various air drying duration after applying adhesive affect the shear bond strength of composite resin to dentin, and to evaluate the adhesive pattern of composite resin and dentin under SEM. Seventy-seven extracted human molar teeth were cleaned and mounted in palstic test tubes. The occlusal dentin surfaces were exposed with Diamond Wheel Saw and smoothed with Lapping and Polishing Machine (South Bay Technology Co., U.S.A.). Teeth were randomly divided into 7 groups (n=11), In experimental A group, adhesive was applied to dentin with agitation for 20 sec. In experimental N-A group, adhesive were continuously applied to dentin for 20 sec. Also control and experimental 1, 2, 3, 4 groups were dried for 10, 0, 5, 20, 30 seconds after applying adhesive, respectively, Adhesives were light cured for 10 sec. A gelatin capsule 5mm in diameter was filled with Aelitefil$^{TM}$ composite resin, placed on the treated dentin surface and light cured for 40 see, from three sides, All specimens were stored in distilled water at room temperature for 24 hours. The shear bond strengths were measured using a universal testing machine(AGS-1000 4D, Japan) at a crosshead speed of 5mm/min. An one-way ANOVA and LSD test were used for statistical analysis of the data. For SEM evaluation, seven specimens were made and sectioned. Representive postfracture and seven specimens were mounted on brass stubs, sputter-coated with gold and observed under SEM. The results were as follows : 1. The shear bond strength of experimental A group which adhesive were applied to dentin with agitation was higher than that of experimental N-A group (continuous application), and there was significant difference between two groups (p<0.01). 2. The interface between composite and dentin according to different application methods showed close adaptation in experimental A group and showed tinny gap in experimental N-A group. 3. The shear bond strength accoding to various air drying duration was the lowest value(7.57${\pm}$2.60 MPa) in experimental 1 group, so there was significant difference between experimental 1 group and other four groups (p<0.05). But there was no significant difference of shear bond strength between four groups (p>0.05). 4. The interface between composite and dentin according to various air drying duration showed close adaptation in control group and tinny gap in experimental 3 and 4 groups. But experimental 1 and 2 groups showed $30{\mu}$ and 6 - $10{\mu}m$ thick gaps, respectively.

  • PDF

A Study on Changes of Cell Adhesive force and Distribution of F-actin and Vinculin under Various Intermittent Hydrostatic Pressure. (간헐적 정수압의 다양한 패턴에 따른 세포 부착력과 F-actin 및 vinculin 의 분포 변화 연구)

  • 김영직;박수아;신호준;김인애;이용재;허수진;황영미;신정욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1215-1220
    • /
    • 2004
  • Cell adhesion to any material surface is considered to be fundamental and important phenomenon in the fields of tissue engineering. Cell adhesion molecules, mechanism, and attachment force have been studied and described a lot. However, the effects of mechanical stimuli on the adhesive forces still have been left much to be investigated. In this study, to investigate the changes in cell adhesive force due to resting time period during the intermittent hydrostatic pressurizing (IHP), cells were cultured under the IHP with various resting times. Then the cell adhesive forces were measured quantitatively utilizing a cell detachment test system and immunofluorescent staining was performed using fluorescent microscopy. In the results, immediately after mechanical stimuli (150 minutes after seeding) and one hour later (210 minutes after seeding), the average adhesive force of experimental group 5 (resting time: 15min) compared with that of control group at same culture time was increased significantly (p<0.05). The results indicated that IHP can contribute in improving cell adhesive force and some of time intervals were required for the expression of cell response.

  • PDF

Effect of Spew Fillet on Failure Strength Properties of Natural Fiber Reinforced Composites Including Adhesive Bonded Joints (접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 접착제 필릿의 영향)

  • Yoon Ho-Chel;Choi Jun-Yong;Kim Yong-Jig;Lim Jae-Kyoo
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.67-71
    • /
    • 2005
  • This paper is concerned with a study on fracture strength of composites in an adhesive single lap joint. The tests were carried out on joint specimens made with hybrid stacked composites consisting of the polyester and bamboo natural fiber layer. The main objective of this work was to evaluate the fracture properties adjacent to adhesive bonded joint of natural fiber reinforced composite specimens. From the results, natural fiber reinforced composites have lower tensile strength than the original polyester. But tensile-shear strength of natural fiber reinforced composites with bamboo layer far from adhesive bond is as high as that of the original polyester adhesive bonded joints. Spew filet at the end of the overlap reduced the stress concentration at the bonded area. Spew fillet and position of bamboo natural fiber layer have a peat effect on the tensile-shear strength of natural fiber reinforced composites including adhesive bonded joints.

Adhesive systems applied to dentin substrate under electric current: systematic review

  • Carolina Menezes Maciel;Tatiane Cristina Vieira Souto;Barbara de Almeida Pinto;Lais Regiane Silva-Concilio;Kusai Baroudi;Rafael Pino Vitti
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.55.1-55.9
    • /
    • 2021
  • Objectives: The purpose of this systematic review was to collect and discuss the technique of adhesive systems application on dentin substrate under electric current. Materials and Methods: The first search strategy was based on data available at PubMed, LILACS, Scielo, Scopus, and Cochrane Library, using a combination of descriptors such as "dentin bond agents OR adhesive system AND electric current OR electrobond" or "dentin bonding agents OR dentin bonding agent application OR adhesive system AND electric current OR electrobond", with no limit regarding the publication year. The second search strategy was based on the articles' references found previously. An additional search strategy was applied that concerned the proposed theme in the SBU-UNICAMP (Unicamp's Library System Institutional Repository). Results: Twelve studies published between 2006 and 2020 were found. The analyses of the selected studies showed that the use of electric current during adhesive systems application on dentin, whether conventional or self-conditioning, increases resinous monomer infiltration in the dentin substrate, which improves the hybridization processes and the bond strength of the restorative material to dentin. Conclusions: Despite the favorable results related to the use of this technique, there is still no specific protocol for the application of adhesive systems under electric current.

Micro Bonding Using Hot Melt Adhesives

  • Bohm, Stefan;Hemken, Gregor;Stammen, Elisabeth;Dilger, Klaus
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.28-31
    • /
    • 2006
  • Due to the miniaturization of MEMS and microelectronics the joining techniques also have to be adjusted. The dosing technology with viscous adhesives does not permit reproducible adhesive volumes, which are clearly under a nano-liter. A nano-liter means however a diameter of bonding area within the range of several 100 micrometers. Additional, viscous adhesives need a certain time, until they are cross linked or cured. The problem especially in the MEMS is the initial strength, since it gives the time, which is needed for joining an individual adhesive joint. The time up to the initial strength is with viscous, also with fast curing systems, within the range of seconds until minutes. Until the reach of the initial strength, the micro part must be fixed/held. Without sufficient adjustment/clamping it can come to a shift of the micro parts. Also existing micro adhesive bonding processes are not batch able, i.e. the individual adhesive joints of a micro system must be processed successively. In the context of the WCARP III 2006 now an innovative method is to be presented, how it is possible to solve the existing problems with micro bonding. i.e. a method is presented, which is batch able, possess a minimum joining geometry with some micrometers and is so fast that no problems with the initial strength arise. It is a method, which could revolutionize the sticking technology in the micro system engineering.

  • PDF

Comparison Study of Thermal Decomposition Characteristics of Wattle & Pine Tannin-based Adhesives

  • Kim, Sumin;Lee, Young-kyu;Kim, Hyun-Joong;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.34-41
    • /
    • 2002
  • This study investigated the thermogravimetric analysis of two types of cured tannin-based adhesives from wattle and pine, with three hardeners of paraformaldehyde, hexamethylenetetramine and TN (tris(hydroxyl)nitromethan), at a temperature of 170℃ and a heating rate of 5, 10, 20 and 40℃/min for 10 minutes. The 5 minutes cured wattle tannin-based adhesive with each hardener at 170℃ was also tested to compare the degree of curing. It was found that thermogravimetric analysis could be used to measure the degree of curing of a thermosetting adhesive. The TG-DTG curves of all the adhesive systems were similar and showed three steps in a similar way to a phenolic resin. This means that each adhesive system is well cross-linked. However, a high thermal decomposition rate was shown at 150 to 400℃ in the case of the pine tannin sample with TN (tris(hydroxyl)nitromethan). The Flynn & Wall expression was used to evaluate the activation energy for thermal decomposition. As the level of conversion (𝛼) increased, the activation energy of each system increased. The activation energy of the wattle tannin-based adhesive with paraformaldehyde was higher than the others.

Adhesive Polyurethane-based Capacitive Electrode for Patch-type Wearable Electrocardiogram Measurement System (패치형 웨어러블 심전도 측정 시스템을 위한 접착성 폴리우레탄 기반의 용량성 전극)

  • Lee, Jeong Su;Lee, Won Kyu;Lim, Yong Gyu;Park, Kwang Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.203-210
    • /
    • 2014
  • Wearable medical device has been a resurgence of interest thanks to the development of technology and propagation of smart phone in recent years. Various types of wearable devices have been introduced and available in market. Capacitive coupled electrode which measures electrocardiogram over cloth is able to be applied wearable device. In previous approaches of capacitive electrode, they need proper pressure for stable contact of the electrode to body surface. However, wearable device that gives pressure on body surface is not suitable for long-term monitoring. In this study, we proposed adhesive polyurethane-based capacitive electrode for patch-type wearable electrocardiogram (ECG) monitoring device. Self-adhesive polyurethane make the electrode and whole system be adhered to the surface of skin without any pressure. The patch-type system is consisted of analog filter, analog-to-digital converter and wireless transmission module and designed to be attached on the body as a patch. To validate the feasibility of the developed system, we measured ECG signal in stable and active state and extracted heart rate. Therefore, we observed skin response after long-term attachment for biocompatibility of the adhesive polyurethane and adhesive strength of it. The result shows the possibility of applying the developed system for ECG monitoring in real-life.