• Title/Summary/Keyword: Adhesive process

Search Result 460, Processing Time 0.026 seconds

Evaluation of Dispersivity and Resistance of the Adhesive Joint According to Dispersion Methods of CNT (CNT 분산 방법에 따른 접착조인트의 저항 및 분산성 평가)

  • Lee, Bong-Nam;Kim, Cheol-Hwan;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.348-355
    • /
    • 2015
  • NDT (Non Destructive Test) of the adhesive joints is very important because their strengths have greatly affected by the worker's skill and environmental condition. Recently, the electric impedance method in which 1-2 wt% CNT was dispersed in the adhesive and the electric resistance of the adhesive joint was measured was suggested for the defect detection of the adhesive joint. The uniform dispersion of CNT in the electric impedance method is very important to make a constant electric resistance of the adhesive joint and the accuracy of defect detection depends on the uniform dispersion. In this paper, the adhesive joints in which CNT was dispersed in the adhesive by the four dispersion methods were made and their electric resistance were measured. The pre-process and evaporation process of CNT using the ultrasonic method and agitation method was used and the effective dispersion method was suggested. Also, the criteria to evaluate the dispersivity was proposed.

Effect of Process Parameters on the Shear Adhesive Strength of the Joint between Composite Materials (복합재료 접합부의 전단 강도에 미치는 공정 변수의 영향)

  • 소용신;김하근;김대영
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.58-60
    • /
    • 2003
  • This study was conducted to optimize adhesive joining procedure for epoxy resin composite materials through investigations on correlation of curing condition with shear adhesive strength, curing mechanism analysis and fracture position observation. It was found that shear adhesive strength ranged 4 to 6MPa and could be improved 50 to 70% by increasing curing temperature from 20 to 140$^{\circ}C$. Based on FT-IR spectra analysis, formation of ether group(-$\bigcirc$-) as an evidence of curing was remarkable at the heated curing condition.

  • PDF

AN EXPERIMENTAL STUDY OF EFFECTS OF THE FIBRIN ADHESIVE ON BONE FORMATION PROCESS AFTER FREEZE DRIED DEMINERALIZED ALLOGENEIC BONE GRAFTS (냉동 건조 탈회 동종골 이식시 조직 접착제가 골 치유 과정에 미치는 영향에 관한 실험적 연구)

  • Kim, Chi-Kyeong;Kim, Soo-Nam;Min, Seung-Ki
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.17 no.4
    • /
    • pp.365-378
    • /
    • 1995
  • Allogeneic bone grafting has recently been used in oral and maxillofacial regions to restore the cosmetic and functional problem. There are several types of allogeneic bone grafts ; bone powder, bone chips, bone blocks. Empirically, it is thought to be better to combine the allogeneic bone chips to any type of tissue adhesive not to displace during packing and condensing. But, there are no reports about using tissue adhesive in allogeneic bone grafting. This experimental study is designed to investigate the effect of the fibrin adhesive on bone healing process after demineralized allogeneic bone grafting in 60 rats. In control groups (30 rats), routine demineralized allogeneic bone grafting were done in 7 ${\times}$ 7mm calvarial bone defects which were drilled intentioally. And we used the fibrin adhesive for holding the bone particle in experimental groups (30 rats). Each experimental specimen was sacrified at 1, 2, 4, 6, 8 weeks postoperatively The results were as follows : 1. The degree of inflammatory cell infiltrations were more prominent in experimental than in control groups till 2 weeks. 2. Early fibroblast proliferation and new capillary proliferation were uncorporated around graft sites in the experimental groups later than in control groups at early stages. 3. Osteoblastic activity in control group was more prominent at 2 weeks. 4. Osteoblastic activity in experimental groups was more prominent than in control group till 4 weeks. 5. New bone formation was more in control group than experimental group till 3 weeks, but similar appearance after that time. As above results, initial bone healing within 2 weeks were more processed in without adhesive group than with adhesive group. But above 4 weeks; similar bone healing were observed.

  • PDF

Effect Evaluation of Hole Defects in Adhesive on SIF of Interface Crack (접착층내 결함이 계면균열의 응력확대계수에 미치는 영향 평가)

  • Hyun, Cheol-Seung;Heo, Sung-Pil;Yang, Won-Ho;Ryu, Myung-Hae
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.299-303
    • /
    • 2001
  • Adherend-adhesive interface failure will occur on a macroscale when surface preparation or material quality are poor. It is well known that the stress singularity occurs at the edges of interface between the adhernds and the adhesive, and that crack will initiate from these positions. Also if bubbles are created and remained in the adhesive layer during the bonding process, the stress concentrates around these hole defects. In this paper, the effects of the hole defects on the SIF of interface crack were examined. From results, SIF increased with the hole defects near the interface crack and increased with an decreae in the upper adherend thickness, an increase in the center adhesive thickness.

  • PDF

Effect of the Si-adhesive layer defects on the temperature distribution of electrostatic chuck (Si-adhesive 층의 불량에 따른 정전척 온도분포)

  • Lee, Ki Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.71-74
    • /
    • 2012
  • Uniformity of the wafer temperature is one of the important factors in etching process. Plasma, chucking force, backside helium pressure and the surface temperature of ESC(electrostatic chuck) affect the wafer temperature. ESC consists of several layers of structure. Each layer has own thermal resistance and the Si-adhesive layer has highest thermal resistance among them. In this work, the temperature distribution of ESC was analyzed by 3-D FEM with various defects and the thickness deviation of the Si-adhesive layer. The result with Si-adhesive layer with the low center thickness deviation shows modified temperature distribution of ESC surface.

Adhesive Strength and Interface Characterization of CF/PEKK Composites with PEEK, PEI Adhesives Using High Temperature oven Welding Process (고온 오븐 접합을 적용한 PEEK, PEI 기반 CF/PEKK 복합재의 접착 강도 및 계면 특성 평가)

  • Park, Seong-Jae;Lee, Kyo-Moon;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.86-92
    • /
    • 2022
  • This study was conducted to determine the effect of molecular formation of adhesive on interface characterization of thermoplastic composites. Carbonfiber/polyetherketoneketone (CF/PEKK) thermoplastic composites were fusion bonded and PEEK, PEI adhesive bonded using a high-temperature oven welding process. In addition, lap shear strength test and fracture surface analysis using a digital optical microscope and a scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) were performed. As a result, the adhesive bonding method improved adhesion strength with interphase having increased molecular formation of ether groups, ketone groups, and imide groups which mainly constitutes the CF/PEKK and adhesives. Furthermore, it was found that the use of PEEK containing more ether groups and ketone groups forms a more strongly bonded interphase and enhances the adhesive force of the CF/PEKK composites.

Molecular Dynamics Study on the Effect of Process Parameters on Nanoimprint Lithography Process (공정인자들이 나노임프린트 리소그래피 공정에 미치는 영향에 대한 분자동역학 연구)

  • Kang, Ji-Hoon;Kim, Kwang-Seop;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.243-251
    • /
    • 2006
  • Molecular dynamics simulations of nanoimprint lithography NIL) are performed in order to investigate effects of process parameters, such as stamp shape, imprinting temperature and adhesive energy, on nanoimprint lithography process and pattern transfer. The simulation model consists of an amorphous $SiO_{2}$ stamp with line pattern, an amorphous poly-(methylmethacrylate) (PMMA) film and an Si substrate under periodic boundary condition in horizontal direction to represent a real NIL process imprinting long line patterns. The pattern transfer behavior and its related phenomena are investigated by analyzing polymer deformation characteristics, stress distribution and imprinting force. In addition, their dependency on the process parameters are also discussed by varying stamp pattern shapes, adhesive energy between stamp and polymer film, and imprinting temperature. Simulation results indicate that triangular pattern has advantages of low imprinting force, small elastic recovery after separation, and low pattern failure. Adhesive energy between surface is found to be critical to successful pattern transfer without pattern failure. Finally, high imprinting temperature above glass transition temperature reduces the imprinting force.

Stability of Tip in Adhesion Process on Atomic Force Microscopy Studied by Coupling Computational Model

  • Senda, Yasuhiro;Blomqvist, Janne;Nieminen, Risto M.
    • Applied Science and Convergence Technology
    • /
    • v.26 no.1
    • /
    • pp.6-10
    • /
    • 2017
  • We investigated the stability of ionic configurations of the tip of the cantilever in non-contact AFM.; For this, we used a computational model that couples the ionic motion of the MgO surface and the oscillating cantilever. The motion of ions was connected to the oscillating cantilever using a coupling method that had been recently developed. The adhesive process on the ionic MgO surface leads to energy dissipation of the cantilever. It is shown that limited types of ionic configurations of the tip are stable during the adhesive process. Based on the present computational model, we discuss the adhesive mechanism leading to energy dissipation.

Analysis of Residual Stresses Induced during Adhesion Process of Chip and Leadframe (칩과 리드페임의 접착과정에서 발생하는 잔류 응력 해석)

  • 이상순
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.97-103
    • /
    • 2000
  • This paper deals with residual stresses induced at the viscoelastic adhesive layer between the semiconductor chip and the leadframe during adhesion process. The adhesive layer has been assumed to be“thermorheologically simple”. The time-domain boundary element method(BEM) has been employed to investigate the behavior of interface stresses. Numerical results show that very large stress gradients are present at the interface corner and such singularity might lead to local yielding or edge delamination.

  • PDF

Material Parameters Identification of Adhesive in Layered Plates Using Moiré Interferomety and Optimization Technique (무아레 간섭계 측정과 최적화 기법을 이용한 적층판의 접착제 물성치 규명)

  • Joo, Jin-Won;Kim, Han-Jun;Lee, Woo-Hyuk;Kim, Jin-Young;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1100-1107
    • /
    • 2007
  • In this study, a method to characterize material properties of adhesive that is used in a layered plates bonding process is developed by combined evaluation of experiment, simulation and optimization technique. A small bonded specimens of rectangular plate are prepared to this end, and put into a thermal loading conditions. $Moir{\acute{e}}$ interferomety is used to measure submicron displacements occurred during the process. The elevated temperature is chosen as control factors. FE analysis with constant values for the adhesive materials is also carried out to simulate the experiment. Significant differences are observed from the two results, in which the simulation predicts the monotonic increase of the bending displacement whereas the measurement shows decrease of the displacement at above $75^{\circ}C$. In order to minimize the difference of the two, material parameters of the adhesive at a number of different temperatures are posed as unknowns to be determined, and optimization is conducted. As a result, optimum material parameters are found that excellently matches the simulation and experiment, which are decreased with respect to the temperature.