• Title/Summary/Keyword: Adhesive patterns

Search Result 111, Processing Time 0.024 seconds

Fabrication and Characteristic Evaluation of a Flexible Tactile Sensor Using PVDF (PVDF를 이용한 유연 촉각센서의 제작과 특성 평가)

  • Yu, Kee-Ho;Yun, Myung-Jong;Kwon, Tae-Gyu;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.161-166
    • /
    • 2001
  • The prototype of a tactile sensor with $4\times 4$ taxels using PVDF was fabricated. The electrode patterns of the thin Cu tape are attached to the 28${\mu}{\textrm}{m}$ thickness PVDF using conductive adhesive and covering the sensor using polyester film for insulation. The structure of the sensor is flexible and the fabrication procedure is easy relatively. Also the output characteristics of the sensor was nearly linear with 8% deviation. The signals of a contact pressure to the tactile sensor are sensed and processed through A/D converter, DSP system and personal computer. The reasonable performance for the detection of contact shape and force distribution was verified through the experiment.

  • PDF

Numerical approach to fracture behavior of CFRP/concrete bonded interfaces

  • Lin, Hai X.;Lu, Jian Y.;Xu, Bing
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.291-295
    • /
    • 2017
  • Tests on the fracture behavior of CFRP-concrete composite bonded interfaces have been extensively carried out. In this study, a progressive damage model is employed to simulate the fracture behaviors. The crack nucleation, propagation and more other details can be captured by these models. The numerical results indicate the fracture patterns seem to depend on the relative magnitudes of the interface cohesive strength and concrete tensile strength. The fracture pattern transits from the predominated adhesive-concrete interface debonding to the dominated concrete cohesive cracking as the interface cohesive strength changes from lower than concrete tensile strength to higher than that. The numerical results have an agreement with the experimental results.

A study on Textile Designs Incorporating Korean Traditional Arabesque Pattern (한국 전통 당초문양을 활용한 텍스타일 디자인 개발)

  • Lee, Youn-Soon;Kwon, Hyun-Jung;Lee, Jung-Eun
    • Fashion & Textile Research Journal
    • /
    • v.10 no.4
    • /
    • pp.479-488
    • /
    • 2008
  • The purpose of this study was to re-interpret the traditional patterns in modern point of view and connect them to the apparel textile design to use them widely in our real life. For this, a documentary research on the traditional patterns and arabesque patterns was made first, and then, through the manual and photoshop workings, two apparel textile designs were suggested. As a result, the followings were acquired: First, the arabesque pattern, which is a traditional pattern of Korea, has a continuous life power and a natural formative characteristics. In its pattern, there is an abundant possibility of change. So, it has a wide usability regardless of time and space. As the symbolic image of the arabesque pattern is connected with the instinctive beauty sense of human beings, it has shown the more adhesive affinity that any other materials. Second, two kinds of textile design were suggested. The motif of work 1, "Fragrance of Woman," was the richness and the harmony, and so a lotus arabesque pattern was selected to present its concept, "Classic Elegance." The expression technique was to use a manual work and cloths to make it a voluminous one. The motif of work 2, "Green Field" was to show the clean beauty with a lotus arabesque pattern. Its concept was the "Natural Elegance," and the expression technique was to repeat the motif by using the Adobe Photoshop to complete the work.

THE COMPARATIVE STUDY ON THE SHEARBOND STRENGTH AND THE MORPHOLOGY OF RESIN-DENTIN INTERFACE BONDED BY SEVERAL DENTINAL BONDING SYSTEM (수종의 상아질 결합체의 전단강도 및 결합부의 형태에 관한 비교연구)

  • Kim, Yun-Cheol;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.4
    • /
    • pp.867-886
    • /
    • 1996
  • The purpose of this study was to evaluate the shearbond strength and resin-dentin interface of three different dentinal bonding systems in primary and permanent teeth. Thirty extracted human primary molars and premolars, which were non-carious and free of obvious defect, were selected for this study. All specimens were divided into six groups with two groups allocated for each of the three dentinal bonding system(All-bond 2, Scotchbond Multi-Purpose, Gluma bonding system). After completion of bonding composite to dentin using each tested dentin bonding system, bond strength measurement and histological observation were performed. The results are as follows: 1. All-bond 2 and Scotchbond Multi-Purpose, A good quality hybrid layer was identified, the morphology of which could be equated with the zone of H-E and Brown-Brenn staining. In Gluma bonding system, hybrid layer was very thin, and separated from the solid polymer. 2. All-bond 2 had the highest mean shearbond strength, followed by Scotchbond Multi-Purpose and Gluma bonding system in both primary and permanent teeth. There was no statistically significant difference between All-bond 2 and Scotchbond Multi-Purpose. Statistically significant difference could be found between Gluma bonding system and the other two groups(p<0.05). 3. The fracture patterns observed were mainly the mixture of adhesive failure and dentin dettachment pattern in All-bond 2 and Scotchbond Multi-Purpose while adhesive failure prevailed in Gluma bonding system.

  • PDF

REWETTING EFFECT OF WATER-BASED PRIMER ON THE AIR-DRIED DENTIN (공기건조된 상아질에 대한 수분함유 primer의 재습윤효과)

  • Kim, Ki-Young;Park, Jeong-Kil;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.6
    • /
    • pp.498-503
    • /
    • 2003
  • The purpose of this study was to evaluate the rewetting effect of water-based primer on the air-dried dentin. In this in vitro study, freshly extracted non-caries human molars and three-step adhesive system(SBMP) were used. Freshly extracted non-caries human molars and three-step adhesive system(SBMP) were used. Flat occlusal dentin surface were prepared using low-speed diamond saw, Prepared teeth were randomly divided into three groups. Group 1.(W): etched(35% phosphoric acid for 15s) and blot-dried, Group 2.(5D): 5s air-dried, Group 3.(30D): 30s ail-dried, To obtain color contrast in CLSM observation, primer was mixed with rhodamine B and bonding resin was mixed with fluorescein. Microscopic sample of each group were obtained after longitudinal section. Morphological investigation of resin-dentin interface and thickness of hybrid layer measurement using CLSM were done. Microtensile bond strength for each specimen was measured. Specimen were observed under microscope to examine the failure patterns of interface between resin and dentin. The results of this study were as follows: 1. The results(mean) of Thickness of hybrid layer were W:19.67, 5D:20.9, 30D:10$\mu\textrm{m}$. Only 30D had statistically significant differences to Wand 5D(P<0.05). 2. The results(mean) of Microtensile bond strength were W:16.02, 5D:14.69, 30D:11.14MPa. Only 30D had statistically significant differences to Wand 5D(P<0.05). 3. There were positive correlation between Thickness of hybrid layer and microtensile bond strength(P<0.05).

THE ETCHING EFFECTS AND MICROTENSILE BOND STRENGTH OF TOTAL ETCHING AND SELF-ETCHING ADHESIVE SYSTEM ON UNGROUND ENAMEL (법랑질에 대한 total etching과 self-etching 접착제의 산부식 효과와 미세인장결합강도)

  • Oh, Sun-Kyong;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.3
    • /
    • pp.273-280
    • /
    • 2004
  • The purpose of this study was to evaluate the etching effects and bond strength of total etching and self-etching adhesive system on unground enamel using scanning electron microscopy and microtensile bond strength test. The buccal coronal unground enamel from human extracted molars were prepared using low-speed diamond saw. Scotchbond Multi-Purpose (group SM). Clearfil SE Bond (group SE), or Adper Prompt L-Pop (group LP) were applied to the prepared teeth. and the blocks of resin composite (Filtek Z250) were built up incrementally. Resin tag formation was evaluated by scanning electron microscopy. after removal of enamel surface by acid dissolution and dehydration. For microtensile bond strength test. resin-bonded teeth were sectioned to give a bonded surface area of $1\textrm{mm}^2$. Microtensile bond strength test was perfomed. The results of this study were as follows. 1. A definite etching pattern was observed in Scotchbond Multi-Purpose group. 2. Self-etching groups were characterized as shallow and irregular etching patterns. 3. The results (mean) of microtensile bond strength were SM: 26.55 MPa, SE: 18.15 MPa, LP: 15.57 MPa. SM had significantly higher microtensile bond strength than 8E and PL (p < 0.05). but there was no significant differance between SE and PL.

A TEM STUDY OF THE RESIN-DENTIN INTERDIFFUSION ZONE FORMED BY ONE-BOTTLE DENTIN ADHESIVE SYSTEMS (단일용기 상아질 접착제 처리 후 레진-상아질 경계면에 대한 투과전자현미경적 연구)

  • Yang, Dong-Woon;Park, Seong-Ho;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.2
    • /
    • pp.180-192
    • /
    • 2000
  • One bottle system was recently developed in order to simplify the clinical skills and save chair time after continuous improvements on dentin bonding agents. There has been many studies to measure the bond strength of one bottle systems but no actual work has been done on micromorphologic study of resin-dentin interdiffusion zone after one bottle system application. To evaluate the bonding patterns of various commercially available one bottle systems to dentin, observation of resin-dentin interdiffusion zone under TEM was performed. Caries-free human third molars within one month of extractions were chosen for the experiments. The molars were sectioned 1mm above the cementoenamel junction and got rid of the root portions. Crown portions of the teeth were sectioned parallel to occlusal surface so that dentin discs of 1mm in thickness were remained. 7 one bottle systems and 1 two bottle system were applied according to manufacturer's instructions and followings were the results. 1. In every experimental groups, cross bandings of collagen fiber were distinguishable and tight bon dings between the bonding agents and dentin were observed. 2. Hybrid layer was clearly observed in ONE-STEP$^{(R)}$, Prime & Bond$^{(R)}$ 2.1, Syntac$^{(R)}$ SC, MAC-BOND II groups but it was not clear in Single Bond, D-Liner Dual PLUS, ONE COAT BOND groups. 3. Electron-density of hybrid layer was uniform in pattern in MAC-BOND II, Prime & Bond$^{(R)}$ 2.1 groups but not so uniform in ONE-STEP$^{(R)}$ group. 4. Electron-dense amorphous phase in most superior layer of the resin-dentin interdiffusion zone was characteristically observed in Single Bond, Syntac$^{(R)}$ SC, ONE COAT BOND groups. It can be concluded that bondings between the dentin bonding agents and dentin can be various in pattern according to their chemical compositions and the condition during applications.

  • PDF

A COMPARISON OF FRACTURE STRENGTHS OF PORCELAIN-FUSED-TO-TITANIUM CROWN AMONG TITANIUM SURFACE COATING TREATMENTS (타이타늄 표면 코팅 처리에 따른 타이타늄도재관의 파절강도 비교)

  • Kim, Ji-Hye;Park, Sang-Won;Vang, Mong-Sook;Yang, Hong-So;Park, Ha-Ok;Lim, Hyun-Pil;Oh, Gye-Jeong;Kim, Hyun-Seung;Lee, Kwang-Min;Lee, Kyung-Ku
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.203-215
    • /
    • 2007
  • Statement of problem: Titanium and its alloy, with their excellent bio-compatibility and above average resistance to corrosion, have been widely used in the field of dentistry. However, the excessive oxidization of titanium which occurs during the process of firing on porcelain makes the bonding of titanium and porcelain more difficult than that of the conventional metal-porcelain bonding. To solve this problem related to titanium-porcelain bonding, several methods which modify the surfaces, coat the surfaces of titanium with various pure metals and ceramics, to enable the porcelain adhesive by limiting the diffusion of oxygen and forming the adhesive oxides surfaces, have been investigated. Purpose: The purpose of this study was to know whether the titanium-porcelain bonding strength could be enhanced by treating the titanium surface with gold and TiN followed by fabrication of clinically applicable porcelain-fused-to-titanium crown Material and method: The porcelain-fused-to-titanium crown was fabricated after sandblasting the surface of the casting titanium coping with $Al_2O_3$ and treating the surface with gold and TiN coating followed by condensation and firing of ultra-low fusing porcelain. To compare with porcelain-fused-to-titanium crowns, porcelain-fused-to-gold crowns were fabricated and used as control groups. The bonding strengths of porcelain-fused-to-gold crowns and porcelain-fused-totitanium crowns were set for comparison when the porcelain was fractured on purpose to get the experimental value of fracture strength. Then, the surface were examined by SEM and each fracturing pattern were compared with each other Result:Those results are as follows. 1. The highest value of fracture strength of porcelain-fused-to-titanium crowns was in the order of group with gold coating, group with TiN coating, group with $Al_2O_3$ sandblasting. No statistically significant difference was found among the three (P>.05). 2. The porcelain-fused-to-gold crowns showed the highest value in bonding strength. The bonding strength of crowns porcelain-fused-to-titanium crowns of rest groups showed bonding strength reaching only 85%-94% of that of PFG, though simple comparision seemed unacceptable due to the difference in materials used. 3. The fracturing patterns between metal and porcelain showed mixed type of failure behavior including cohesive failure and adhesive failure as a similar patterns by examination with the naked eye and SEM. But porcelain-fused-to-gold crowns showed high incidence of adhesive failure and porcelain-fused-to-titanium crowns showed high incidence of cohesive failure. Conclusion: Above results proved that when fabricating porcelain-fused-to-titanium crowns, treating casting titanium surface with gold or TiN was able to enhance the bonding strength between titanium and porcelain. Mean value of masticatory force was found to showed clinically acceptable values in porcelain bonding strength in all three groups. However, more experimental studies and evaluations should be done in order to get better porcelain bonding strength and various surface coating methods that can be applied on titanium surface with ease.

The Effect of Resin Base Surface Treatment on Shear Bond Strength in Indirect Bracket Bonding Technique (브라켓 간접부착술식시 레진베이스의 표면처리가 전단결합강도에 미치는 영향)

  • Yim, Byeong-Cheol;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.28 no.5 s.70
    • /
    • pp.681-688
    • /
    • 1998
  • The purpose of this study was to evaluate the effects of the surface treatments of resin bases in indirect bracket bonding technique by study of shear bond strengths and failure patterns. Ninety metal brackets were bonded to the stone models of specimens involving bovine lower incisor with light-cured adhesive(Light-Bond). After removal of brackets with the resin base from the stone models, the surfaces of resin bases in thirty brackets were treated with Plastic Conditioner and the surfaces of resin bases in another thirty brackets were treated with sandblaster and the remaining thirty brackets were served as controls. All brackets were transferred to the specimens and bonded using sealant. The shear bond strength was tested on universal testing machine, and failure pattern was assessed with the adhesive remnant index(ARI). The results were as follows: 1. Surface treatments of resin bases with Plastic Conditioner or sandblasting showed statistically higher shear bond strengths than no treatment group. 2. No significant difference in shear bond strength was found between Plastic Conditioner treatment and sandblasting treatment groups. 3. No significant difference in ARI scores was found among the three groups. 4. As the result of correlation analysis between shear bond strengths and hnl scores, failure at adhesive/bracket base interface tends to increase when the shear bond strength was high, but it was not significant statistically. The above results suggest that improvement of bond strength can be obtained by surface treatment of resin base in the indirect bonding technique.

  • PDF

Study on Frictional Characteristics of Sub-micro Structured Silicon Surfaces (서브 마이크로 구조를 가진 실리콘 표면의 마찰 특성 연구)

  • Han, Ji-Hee;Han, Gue-Bum;Jang, Dong-Yong;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.92-97
    • /
    • 2017
  • The understanding of the friction characteristics of micro-textured surface is of great importance to enhance the tribological properties of nano- and micro-devices. We fabricate rectangular patterns with submicron-scale structures on a Si wafer surface with various pitches and heights by using a focused ion beam (FIB). In addition, we fabricate tilted rectangular patterns to identify the influence of the tilt angle ($45^{\circ}$ and $135^{\circ}$) on friction behaviour. We perform the friction test using lateral force microscopy (LFM) employing a colloidal probe. We fabricate the colloidal probe by attaching a $10{\pm}1-{\mu}m$-diameter borosilicate glass sphere to a tipless silicon cantilever by using a ultraviolet cure adhesive. The applied normal loads range between 200 nN and 1100 nN and the sliding speed was set to $12{\mu}m/s$. The test results show that the friction behavior varied depending on the pitch, height, and tilt angle of the microstructure. The friction forces were relatively lower for narrower and deeper pitches. The comparison of friction force between the sub-micro-structured surfaces and the original Si surface indicate an improvement of the friction property at a low load range. The current study provides a better understanding of the influence of pitch, height, and tilt angle of the microstructure on their tribological properties, enabling the design of sub-micro- and micro-structured Si surfaces to improve their mechanical durability.