• Title/Summary/Keyword: Adhesion improvement

Search Result 379, Processing Time 0.029 seconds

Analysis of Efficiency of Suction Board Drain Method by Step Vacuum Pressure (단계석션압 조건에 따른 석션보드드레인 공법의 효율 분석)

  • Kim, Ki-Nyun;Han, Sang-Jae;Kim, Soo-Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.321-329
    • /
    • 2008
  • In this study, a series of column test as a way in order to make up for the weakness point of the conventional acceleration method were conducted to both propose the suction board drain method and grapes the specific improvement character of this method as a result of a sort of plastic drain board and a phase of vacuum pressure conditions. On this occasion, the study focused on computing the effective factors of the fittest Suction board drain method affected by each condition through confirming the settlement generated during the test, the water content reduction and stress increase effect occurred arising from the test, and the ratio of consolidation related to the improvement period. In accordance with the shape of core and that whether the core is attached to the filter(pocket or adhesion), the castle type of adhesion and the column type of pocket are more efficient than the others as a consequence of the test to find out the improvement effect depending on each drainage such as a castle type, coil type, harmonica type, column type of pocket and a castle of the adhesion. In case of the step suction pressure, the shorter the period of $-0.8\;kg/cm^2$ as a final step of the suction pressure is, the better the improvement is. In addition, the correlation between degree of consolidation per each suction pressure level and duration of application was drawn as a curve and the point of inflection on this curve was provided to determine the duration period to maximize the consolidation.

Linear Ion Beam Applications for Roll-to-Roll Metal Thin Film Coatings on PET Substrates

  • Lee, Seunghun;Kim, Do-Geun
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.162-166
    • /
    • 2015
  • Linear ion beams have been introduced for the ion beam treatments of flexible substrates in roll-to-roll web coating systems. Anode layer linear ion sources (300 mm width) were used to make the linear ion beams. Oxygen ion beams having an ion energy from 200 eV to 800 eV used for the adhesion improvement of Cu thin films on PET substrates. The Cu thin films deposited by a conventional magnetron sputtering on the oxygen ion beam treated PET substrates showed Class 5 adhesion defined by ASTM D3359-97 (tape test). Argon ion beams with 1~3 keV used for the ion beam sputtering deposition process, which aims to control the initial layer before the magnetron sputtering deposition. When the discharge power of the linear ion source is 1.2 kW, static deposition rate of Cu and Ni were 7.4 and $3.5{\AA}/sec$, respectively.

Modification and adhesion improvement of BN interfacial layers by Post-N+ implantation (질소 이온주입법에 의한 BN 박막의 계면구조 개선 및 밀착력 향상)

  • 변응선;이성훈;이상로;이구현;한승희;이응직;윤재홍
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.157-164
    • /
    • 1999
  • The post ion implantation has been applied to modify early-grown BN layer and improve the adhesion of the BN films. The effect of ion implantation doses on microstructure and interlayer was investigated by FTIR and HRTEM. And the hardness and delamination life time of N+-implanted BN films were measured. With increasing the ion dose up to $5.0\times10^{15}\textrm{atoms/cm}^2$,the change of IR spectrum is observed. At $5.0\times10^{16}\textrm{atoms/cm}^2$, a drastic transition of cubic phase into hexagonal phase is detected. The change of microstructure of early-grown layers by ion implantation is confirmed using HRTEM. Both microhardness and delamination life time of BN films increase with ion dose. The modification model of early-grown BN layers is briefly discussed based on the displacement per atom and excess boron in the BN film induced by ion irradiation.

  • PDF

Evaluation of Mechanical Properties of Carbon Fabrics Composite with Thermal Shock (열 충격에 따른 탄소 직물 복합재료의 역학적 특성 평가)

  • Kim, Jae-Hong;Lee, Jung-Ho;Jung, Kyung-Ho;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.79-82
    • /
    • 2005
  • In this study, mechanical properties of carbon fabrics composite under the thermal shock cycling were evaluated. Due to the interactions between fiber and polymer matrix, it is reasonable to conclude that both thermal cycles of thermal shock result in improvement of interlaminar shear strength(ILSS) for the longer conditioning time duration. The rise in ILSS may be attributed to the improved adhesion by cryogenic compressive stress and also by the post-curing strengthening effect. However, the flexural and tensile strength were decreased with increasing conditioning time of thermal cycle.

  • PDF

A Study on the Adhesion Properties of Polymer-Cement Composites for Repairing Cracks in RC Structures (RC 구조물의 균열 보수용 폴리머 시멘트 복합체의 접착특성에 관한 연구)

  • Jo, Young-Kug;Hong, Dae-Won;Kwon, Woo-Chan;Kim, Wan-Ki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.23-34
    • /
    • 2022
  • The purpose of this study is to evaluate the adhesion properties of polymer cement composites for crack repair of an RC structure. Polymer cement composites are manufactured from cement, three types of polymers and silica fume, and the mixture is designed by adjusting the water cement ratio and AE reducing agent so that the viscosity target of the polymer cement composites is 700mPa·s or less. According to the test results, the Type-A adhesion in tension of the polymer cement composite exceeded the adhesion standard of 1.0MPa of the polymer finishing material, and furthermore, depending on the type of polymer, the adhesion in tension was highest for SAE, followed in descending order by EVA, and SBR. In addition, the adhesion in tension of Type-B is up to 1/4.5 lower than that of Type-A, but the incorporation of silica fume shows a significant improvement in terms of adhesion in tension. Based on this study, the basic mixing design of the polymer cement composites required for viscosity and adhesive performance required for crack repair of the RC structure was completed. It could be proposed as an optimal mixing design under conditions for intermixing polymer type EVA, SAE, and P/C 80%-100%.

Adhesion improvement between metals and fluoropolymers by ion assisted reaction (이온보조반응에 의한 금속과 불소계 고분자의 접착력 증진)

  • Han, Sung;Cho, Jun-Sik;Choi, Sung-Chang;Yoon, Ki-Hyun;Koh, Seok-Keun
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2001
  • Polyvinylidenefluoride and Polytetrafluoroethylene have been irradiated by 1 keV Ar+ ion beam in an $O_2$ environment. Hydrophilic functional groups (such as -(C-O)-,-(C=O)-,-(C=O)-O- and so on) were formed on fluoropolymers. Contact angles of water to PVDF were reduced from $75^{\circ}$ to $31^{\circ}$. Re-increase of contact angle was originated from carbonization phase in case of high dose irradiation above $1{\times}10^{16} Ar^+cm^2$. Contact angles to PTFE decreased at low dose irradiation and were exaggerated to about $140^{\circ}$ due to cone type surface at high dose irradiation. Hydrophilic functional groups have played an important role on adhesion between metal and fluoropolymers by acid-base interaction and chemical bond formation. Adhesion of Pt/PVDF was enhanced by acid-base interaction because Pt is inert metal. Chemical bond formation between Cu and PTFE could enlarge the adhesion strength of Cu/PTFE.

  • PDF

A Study on the Improvement on the Target Structure in a Magnetron Sputtering Apparatus (마그네트론 스퍼터링 장치의 타겟구조 개선에 관한 연구)

  • Bae, Chang-Hwan;Lee, Ju-Hee;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • The cylindrical magnetron sputtering has not been widely used, although this system is useful for only certain types of applications such as fiber coatings. This paper presents electrode configurations which improved the complicacy of the target assembly by using the positive voltage power supply. It is a modified type which has a target constructed with a large cylindrical part, a conical part and a small cylindrical part. When positive voltage was applied to an anode, a stable glow discharge was established and a high deposition rate was obtained. The substrate bias current was monitored to estimate the effect of ion bombardment. As a result, it was found that the substrate current was large. With cylindrical and conical cathode magnetron sputter deposition on the surface of the substrate to prevent re-sputtering, ion impact because it can increase the effectiveness with excellent ductility and adhesion of Ti film deposition can be obtained. We board at the front end of the ground resistance of $5\;k{\Omega}$ attached to the substrate potential can be controlled easily, and Ti film deposition with excellent adhesion can be obtained. Microstructure and morphology of Ti films deposited on pure Cu wires were investigated by scanning electron microscopy in relation to preparation conditions. High level ion bombardment was found to be effective in obtaining a good adhesion for Cu wire coatings.

Bending Fatigue Reliability Improvements of Cu Interconnects on Flexible Substrates through Mo-Ti Alloy Adhesion Layer (Mo-Ti 합금 접착층을 통한 유연 기판 위 구리 배선의 기계적 신뢰성 향상 연구)

  • Lee, Young-Joo;Shin, Hae-A-Seul;Nam, Dae-Hyun;Yeon, Han-Wool;Nam, Boae;Woo, Kyoohee;Joo, Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.21-25
    • /
    • 2015
  • Bending fatigue characteristics of Cu films and $8{\mu}m$ width Cu interconnects on flexible substrates were investigated, and fatigue reliability improvement was achieved through Mo-Ti alloy adhesion layer. Tensile bending fatigue reliability of Cu interconnects is 3 times lower than that of Cu films, and even compressive bending fatigue reliability of Cu interconnects is 6 times lower than that of Cu films. From these results, mechanical crack formation could be fatal in Cu interconnects. With Mo-Ti adhesion layer, fatigue reliability of Cu films and interconnects were enhanced due to the increase of adhesion strength and the suppression of slip induced crack initiation.

Improvement of the adhesion and resistivity of low-pressure chemical vapor deposited tungsten films by controlling deposition parameters (LPCVD로 증착한 텅스텐 박막의 증착 조건 제어에 의한 접착성 및 저항 특성 향상)

  • 노관종;윤선필;윤영수;노용한
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.321-327
    • /
    • 2000
  • Tungsten(W) thin films with good adhesion property and low resistivity (~10 $\mu$\Omega$$.cm) were deposited directly on $SiO_2$ by LPCVD. The adhesion property of W thin films on $SiO_2$ improves as the temperature and/or $SiH_4/WF_6$ gas ratio increase. Specifically tungsten thin films could be deposited on $SiO_2$ even at $350^{\circ}C$ if the gas ratio of 2 was employed. The resistivity of tungsten thin films deposited at $350^{\circ}C$ was high due to the presence of $\beta$-W. However, the resistivity can be minimized by increasing the amount of $H_2$ gas flow. Therefore, it is shown in this work that the adhesion of tungsten thin films on $SiO_2$ can be improved simply by controlling the process parameters (e.g., temperature, gas ratio and $H_2$ flow rate) without employing complex deposition methods or additional glue layers.

  • PDF

Friction, Wear and Adhesion of HVOF Coating of Co-alloy Powder

  • Cho, Tong-Yul;Yoon, Jae-Hong;Song, Ki-Oh;Joo, Yun-Kon;Fang, Wei;Zhang, Shihong;Youn, Suk-Jo;Chun, Hui-Gon;Hwang, Soon-Young
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.61-62
    • /
    • 2007
  • HVOF thermal spray coating of micron size Co-alloy powder has been studied for the durability improvement of high velocity spindle (HVS). Optimal coating process of this system for the best surface properties is hydrogen flow rate 75 FMR, oxygen flow rate 38-42 FMR, feed rate 30 g/min at spray distance 5 inch. Friction coefficient (FC) and wear trace (WT) decrease increasing coating surface temperature from 25$^{\circ}$C to 538$^{\circ}$C due to the higher lubricant effects of the oxides at the higher temperature. At the study of adhesion of T800 coating on a light metal alloy Ti-6Al-4V (Ti64) tensile bond strength (TBS) and tensile fracture location (TFL) of Ti64/T800 are 8,740 psi and near middle of T800 coating respectively. This shows that adhesion of Ti64/T800 is higher than the cohesion strength (8,740 psi) of T800 coating. Therefore T800 coating is strongly advisable for the surface coating on HVS such as high speed air-bearing spindle.

  • PDF