• Title/Summary/Keyword: Adhesion control

Search Result 656, Processing Time 0.028 seconds

A study of adhesion characteristics progress for electric car (전동차의 점착특성 향상에 관한 연구)

  • Kim, Gil-Dong;Han, Young-Jae;Park, Hyun-Jun;Lee, Sa-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1436-1438
    • /
    • 2000
  • It is one of the most effective methods for improving the performance of electric railway vehicles to make better the wheel-rail adhesion characteristics. To study adhesion characteristic is to develop the equivalent reduction machine to experiment on the adhesion system. The experiment system makes it possible to change the wheel-rail adhesion force with various adhesion parameters, and therewith to test the adhesion control system with the reduction machine in a laboratory. In this paper, for improving adhesion performance shows actually control methods.

  • PDF

A Study on Deducting Adhesion Characteristic of Urban Train (전동차 점착특성 추정에 관한 연구)

  • Kim, Gil-Dong;Lee, Han-Min;Oh, Seh-Chan;Lee, Chang-Mu;Park, Sung-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.659-664
    • /
    • 2006
  • It is one of the most effective method for improving the performance of electric railway vehicles to make better the wheel-rail adhesion characteristics. To study adhesion characteristic is to develop the equivalent reduction machine to experiment on the adhesion system. The experiment system makes it possible to change the wheel-rail adhesion force with various adhesion parameters, and therewith to test the adhesion control system with the reduction machine in a laboratory. In this paper for improving adhesion performance show actually control methods.

  • PDF

The parallel connected induction motors control for improvement of adhesion performance of trains (열차의 점착성능 개선을 위한 병렬전동기 제어)

  • Byun, Yeun-Sub;Lee, Young-Hoon;Chang, Seok-Ghak;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2649-2651
    • /
    • 2005
  • In trains driven by electric motor, when the adhesion force between rail and driving wheel decreases suddenly, the electric motor coach has slip phenomena. The characteristics of adhesion force coefficient are strongly affected by the conditions between rails and driving wheels, such as moisture, dust, and oil on the rails and so on. This paper proposes the vector control structure for the improved re-adhesion control with paralleled control of induction motors under the sudden variation of the adhesion force.

  • PDF

Fuzzy Re-adhesion Control for Wheeled Robot (이동 로봇의 퍼지 재점착 제어)

  • Kwon, Sun-Ku;Huh, Uk-Youl;Kim, Jin-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.30-32
    • /
    • 2005
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and floor decreases suddenly, the robot begins slip. In order to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. First of all, this paper shows that conventional PI control can not be applied to a wheeled robot of the light weight. Secondly, proposed fuzzy logic is applied to the Takagi-Sugeno model for the configuration of fuzzy sets. For the design of Takagi-Sugeno model and fuzzy rule, proposed algorithm uses FCM(Fuzzy c-mean clustering method) algorithm. The proposed fuzzy logic controller(FLC) is pretty useful with prevention of the slip phenomena for the controller performance in the re-adhesion control strategy.

  • PDF

Selective regulation of osteoclast adhesion and spreading by PLCγ/PKCα-PKCδ/RhoA-Rac1 signaling

  • Kim, Jin-Man;Lee, Kyunghee;Jeong, Daewon
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.230-235
    • /
    • 2018
  • Bone resorption by multinucleated osteoclasts is a multistep process involving adhesion to the bone matrix, migration to resorption sites, and formation of sealing zones and ruffled borders. Macrophage colony-stimulating factor (M-CSF) and osteopontin (OPN) have been shown to be involved in the bone resorption process by respective activation of integrin ${\alpha}v{\beta}3$ via "inside-out" and "outside-in" signaling. In this study, we investigated the link between signal modulators known to M-CSF- and OPN-induced osteoclast adhesion and spreading. M-CSF- and OPN-induced osteoclast adhesion was achieved via activation of stepwise signals, including integrin ${\alpha}v{\beta}3$, $PLC{\gamma}$, $PKC{\delta}$, and Rac1. Osteoclast spreading induced by M-CSF and OPN was shown to be controlled via sequential activation, consistent with the osteoclast adhesion processes. In contrast to osteoclast adhesion, osteoclast spreading induced by M-CSF and OPN was blocked via activation of $PLC{\gamma}/PKC{\alpha}/RhoA$ signaling. The combined results indicate that osteoclast adhesion and spreading are selectively regulated via $PLC{\gamma}/PKC{\alpha}-PKC{\delta}/RhoA-Rac1$ signaling.

Vibro-Contact Analysis of AFM Tip on Polymer Surface (폴리머 표면측정을 위한 AFM 팁의 접촉-진동 해석)

  • Hong, Sang-Hyuk;Lee, Soo-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.538-541
    • /
    • 2005
  • In tapping mode atomic force microscopy(TM-AFM). the vibro-contact response of a resonating tip is used to measure the nanoscale topology and other properties of a sample surface. However, the nonlinear tip-surface interact ions can affect the tip response and destabilize the tapping mode control. Especially it is difficult to obtain a good scanned image of high adhesion surfaces such as polymers and biomoleculars using conventional tapping mode control. In this study, theoretical and experimental investigations are made on the nonlinear dynamics and control of TM-AFM. To analyze the complex dynamics and control of the tapping tip, the classical contact models are adopted due to the surface adhesion. Also we report the surface adhesion is an additional important parameter to determine the control stability of TM-AFM. In addition, we prove that it is more adequate to use Johnson-Kendall-Roberts (JKR) contact model to obtain a reasonable tapping response in AFM for the soft and high adhesion samples.

  • PDF

Anti-Slip Control of Railway Vehicle Using Load Torque Disturbance Observer and Speed Sensor-less Vector Control (부하토크외란관측기와 속도센서리스 벡터제어를 이용한 철도모의장치의 Anti-Slip 제어)

  • Lee S. C.;Kwon J. D.;Kim Y. K.;Jho J. M.;Jeon K. Y.;Lee S. H.;Oh B. H.;Lee H. G.;Kim Y. J.;Han K. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.891-894
    • /
    • 2004
  • This paper estimate coefficient of adhesion through speed sensor-less vector control and load torque disturbance observer used for maximum tractive force control. And also proposes anti-slip control algorithm, which controls torque force of motor in order to keep the estimated adhesion force in maximum adhesion by controlling PI torque with the differential value of estimated adhesion force coefficient.

  • PDF

Design of a Fuzzy Re-adhesion Controller for Wheeled Robot (이동 로봇의 퍼지 재점착 제어기 설계)

  • Kwon Sun-Ku;Huh Uk-Youl;Kim Jin-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.1
    • /
    • pp.48-55
    • /
    • 2005
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and floor decreases suddenly, the robot begins slip. In order to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. First of all, this paper shows that conventional PI control can not be applied to a wheeled robot of the light weight. Secondly, proposed fuzzy logic is applied to the Takagi-Sugeno model for the configuration of fuzzy sets. For the design of Takagi-Sugeno model and fuzzy rule, proposed algorithm uses FCM(Fuzzy c-mean clustering method) algorithm. In additionally, this algorithm adjusts the driving torque for restraining re-slip. The proposed fuzzy logic controller(FLC) is pretty useful with prevention of the slip phenomena for the controller performance in the re-adhesion control strategy, These procedures are implemented using a Pioneer 2-DXE wheeled robot parameter.

Anti-Slip Control by Adhesion Effort Estimation of Railway Vehicle (철도차량장치의 점착력 추정에 의한 Anti-Slip 제어)

  • 김길동;이호용;안태기;홍재성;한석윤;전기영
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.257-264
    • /
    • 2003
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

Odontogenic Ameloblast-Associated Protein (Odam) Plays Crucial Roles in Osteoclast Differentiation via Control of Actin Ring Formation

  • Lee, Hye-Kyung;Park, Joo-Cheol
    • Journal of Korean Dental Science
    • /
    • v.8 no.2
    • /
    • pp.74-81
    • /
    • 2015
  • Purpose: In osteoclast differentiation, actin-rich membrane protrusions play a crucial role in cell adhesion. Odontogenic ameloblast-associated protein (Odam) contributes to cell adhesion by inducing actin rearrangement. Odam-mediated RhoA activity may play a significant role in multinucleation of osteoclasts. However, the precise function of Odam in osteoclast cell adhesion and differentiation remains largely unknown. Here, we identify a critical role for Odam in inducing osteoclast adhesion and differentiation. Materials and Methods: The expression of Odam in osteoclasts was evaluated by immunohistochemistry. Primary mouse bone marrow and RAW264.7 cells were used to test the cell adhesion and actin ring formation induced by Odam. Result: Odam was expressed in osteoclasts around alveolar bone. Odam transfection induced actin filament rearrangement and cell adhesion compared with the control or collagen groups. Overexpression of Odam promoted actin stress fiber remodeling and cell adhesion, resulting in increased osteoclast fusion. Conclusion: These results suggest that Odam expression in primary mouse osteoclasts and RAW264.7 cells promotes their adhesion, resulting in the induction of osteoclast differentiation.