• Title/Summary/Keyword: Adenovirus E3 proteins

Search Result 3, Processing Time 0.015 seconds

Genetic Variation in the Immunoregulatory Gene of Adenovirus Type 3 (3형 아데노바이러스의 면역조절 유전자 다양성)

  • Choi, Eun Hwa;Kim, Hee Sup;Lee, Hoan Jong
    • Pediatric Infection and Vaccine
    • /
    • v.16 no.2
    • /
    • pp.199-204
    • /
    • 2009
  • Purpose : Various proteins encoded in the early region 3 (E3) of adenoviruses protect cells from being killed by cytotoxic T cells and death-inducing cytokines. We sought to find out whether the genetic heterogeneity of the E3 gene might contribute to the molecular diversity of adenoviruses. Methods : Sequences in the E3 region were analyzed for 14 adenovirus type 3 (Ad3) strains that were isolated from children with lower respiratory tract infections in the Seoul National University Children's Hospital during the period 1991-2000. Full-length adenoviral DNA was purified from the infected A549 cell lysates using a modified Hirt procedure. Results : There was 98% homology between 14 Korean Ad3 strains with a reference strain (M15952). Homology within the Korean Ad3 strains was 98.7%. Variation was found in the region of transcripts 20.1 kDa, 20.6 kDa, truncated 7.7 kDa, 10.3 kDa, 14.9 kDa, and 15.3 kDa. In particular, all 14 Korean strains showed a missense single point mutation at the start codon of the truncated 7.7 kDa. In addition, a deletion was found in the truncated 7.7 kDa region by 58 base pairs in 10 strains and 94 base pairs in 4 strains. Variations in amino acids were observed in the receptor internalization and degradation complex (10.3 kDa/14.9 kDa) which stimulates the clearance from the cell surface and subsequent degradation of the receptors for the Fas ligand and TRAIL, while no variations were observed in another immunoregulatory transcript, 19 kDa. Conclusion : Sequence analysis of the immunoregulatory region of adenovirus E3 shows that genetic heterogeneities are related to genome type patterns.

  • PDF

Siewert-Kartagener's syndrome in a dog

  • Rankyung Jung;Jihye Choi;Hyeona Bae ;Dong-In Jung ;Kyoung-Oh Cho;DoHyeon Yu
    • Journal of Veterinary Science
    • /
    • v.24 no.4
    • /
    • pp.57.1-57.8
    • /
    • 2023
  • Siewert-Kartagener's syndrome, a type of primary ciliary dyskinesia, is a complex disease comprising situs inversus, rhinosinusitis, and bronchiectasis. Situs inversus totalis is a condition in which all organs in the thoracic and abdominal cavities are reversed. Furthermore, primary ciliary dyskinesia, an autosomal genetic disease, may coexist with situs inversus totalis. Reports on Siewert-Kartagener's syndrome in veterinary medicine are limited. We report a rare case of primary ciliary dyskinesia with Siewert-Kartagener's syndrome in a dog, concurrently infected with canine distemper virus and type-2 adenovirus. This case highlights that situs inversus totalis can cause primary ciliary dyskinesia, and concurrent infections are possible.

RTP1, a Rat Homologue of Adenovirus ElA-associated Protein BS69, Interacts with DNA Topoisomerase II

  • Oh, Misook;Rha, Geun-Bae;Yoon, Jeong-Ho;Sunwoo, Yang-Il;Hong, Seung-Hwan;Park, Sang-Dai
    • Animal cells and systems
    • /
    • v.6 no.3
    • /
    • pp.277-282
    • /
    • 2002
  • Topoisomearse II is an essential enzyme in all organisms with several independent roles in DNA metabolism. Recently, it has been demonstrated that the C-terminal region of topoisomerases II is associated with hetero-logous protein-protein interactions in human and yeast. In this study, we identified that RTP1, a rat homologue of EIA binding protein BS69, is another topoisomerae II interacting protein by yeast two-hybrid screening. RTP1 has an E1A-binding domain and a MYND motif, which are known to be required for transcriptional regulation by binding to other proteins and interaction with the leucine zipper motif of topoisomerase II. The physical interaction between RTP1 and topoisomerase ll$\alpha$ was examined by GST pull-down assay in vitro. The expression level of RTP1 peaks in S phase as that of topoisomerase ll$\alpha$. These results suggest that the interaction between topoisomerase ll$\alpha$ and RTP1 might play an important role in regulating the transcription of genes involved in DNA metabolism in higher eukaryotes.