• Title/Summary/Keyword: Adenosine stress

Search Result 51, Processing Time 0.017 seconds

Effect of Natural Plant Mixtures on Behavioral Profiles and Antioxidants Status in SD Rats (자생식물 혼합 추출물이 SD 흰쥐에서의 행동양상 및 항산화 체계에 미치는 영향)

  • Seo, Bo-Young;Kim, Min-Jung;Kim, Hyun-Su;Park, Hae-Ryong;Lee, Seung-Cheol;Park, Eun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.9
    • /
    • pp.1208-1214
    • /
    • 2011
  • Caffeine, a psychoactive stimulant, has been implicated in the modulation of learning and memory functions due to its action as a non-selective adenosine receptors antagonist. On the contrary, some side effects of caffeine have been reported, such as an increased energy loss and metabolic rate, decrease DNA synthesis in the spleen, and increased oxidative damage to exerted on LDL particles. Therefore, the aim of this study was to develop a safe stimulant from natural plants mixture (Aralia elata, Acori graminei Rhizoma, Chrysanthemum, Dandleion, Guarana, Shepherd's purse) that can be used as a substitute for caffeine. Thirty SD rats were divided into three groups; control group, caffeine group (15.0 mg/kg, i.p.), and natural plants mixture group (NP, 1 mL/kg, p.o.). The effect of NP extract on stimulant activity was evaluated with open-field test (OFT) and plus maze test for measurement of behavioral profiles. Plasma lipid profiles, lipid peroxidation in LDL (conjugated dienes), total antioxidant capacity (TRAP) and DNA damage in white blood, liver, and brain cells were measured. In the OFT, immobility time was increased significantly by acute (once) and chronic (3 weeks) supplementation of NP and showed a similar effect to caffeine treatment. Three weeks of caffeine treatment caused plasma lipid peroxidation and DNA damage in liver cells, whereas there were no changes in the NP group. NP group showed a higher plasma HDL cholesterol concentration compared to the caffeine group. The results indicate that the natural plants mixture had a stimulant effect without inducing oxidative stress.