• Title/Summary/Keyword: Adenosine receptor agonists

Search Result 19, Processing Time 0.022 seconds

cAMP-Dependent Signalling is Involved in Adenosine-Stimulated $Cl^-$ Secretion in Rabbit Colon Mucosa

  • Oh, Sae-Ock;Kim, Eui-Yong;Jung, Jin-Sup;Woo, Jae-Suk;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.521-527
    • /
    • 1998
  • An important property of the intestine is the ability to secrete fluid. The intestinal secretion is regulated by a number of substances including vasoactive intestinal peptide (VIP), ATP and different inflammatory mediators. One of the most important secretagogues is adenosine during inflammation. However, the controversy concerning the underlying mechanism of adenosine-stimulated $Cl^-$ secretion in intestinal epithelial cells still continues. To investigate the effect of adenosine on $Cl^-$ secretion and its underlying mechanism in the rabbit colon mucosa, we measured short circuit current ($I_{SC}$) under automatic voltage clamp with DVC-1000 in a modified Ussing chamber. Adenosine, when added to the basolateral side of the muocsa, increased $I_{SC}$ in a dose-dependent manner. The adenosine-stimulated $I_{SC}$ response was abolished when $Cl^-$ in the bath solution was replaced completely with gluconate. In addition, the $I_{SC}$ response was inhibited by a basolateral Na-K-Cl cotransporter blocker, bumetanide, and by apical $Cl^-$ channel blockers, dephenylamine-2-carboxylate (DPC), 5-nitro-2-(3-phenyl-propylamino)-benzoate (NPPB), glibenclamide. Amiloride, an epithelial $Na^+$ channel blocker, and 4,4-diisothiocyanato-stilbene-2,2-disulphonate (DIDS), a $Ca^{2+}-activated$ $Cl^-$ channel blocker, had no effect. In the mucosa pre-stimulated with forskolin, adenosine did not show any additive effect, whereas carbachol resulted in a synergistic potentiation of the $I_{SC}$ response. The adenosine response was inhibited by 10 ${\mu}M$ H-89, an inhibitor of protein kinase A. These results suggest that the adenosine-stimulated $I_{SC}$ response is mediated by basolateral to apical $Cl^-$ secretion through a cAMP-dependent $Cl^-$ channel. The rank order of potencies of adenosine receptor agonists was $5'-(N-ethylcarboxamino)adenosine(NECA)>N^6-(R-phenylisopropyl)adenosine(R-$ PIA)>2-[p-(2-carbonylethyl)-phenyl-ethylamino]-5'-N-ethylcarboxaminoadenosine(CGS21680). From the above results, it can be concluded that adenosine interacts with the $A_{2b}$ adenosine receptor in the rabbit colon mucosa and a cAMP-dependent signalling mechanism underlies the stimulation of $Cl^-$ secretion.

  • PDF

Renal Effects of Chronic Treatment Of Adenosine Analogues (Adenosine 수용체 작동제 장기 투여의 신장효과)

  • Kim Tack-Hee;Kim Suhn-Hee;Huh Jong;Cho Kyung-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.325-335
    • /
    • 1997
  • Evidence for the existance of at least two subclasses of renal adenosine receptors has been presented. N-6-cyclohexyladenosine (CHA) is a relatively selective $A_1$ adenosine agonists, whereas 5'-N-ethylcarboxamidoadenosine (NECA) acts as a preferential agonist of $A_2$ adenoisne receptor. N6-(L-2-phenylisoproryl)-adenosine (PIA) almost unselectively activates both $A_1\;and\;A_2$ adenosine receptors at micromolar concentrations. During the characterization of adenosine receptor in the kidney, we have discovered a novel phenomenon, that is, an intramuscular administration of CHA for 3 days caused a diuresis and a suppression of urinary concentrating ability. To further characterize this novel phenomenon, an intramuscular administration of adenosine and other adenosine angonists, PIA and NECA, and prior treatment of adenosine antagonists, caffeine, theophylline and 1,3-diethyl-8-phenyl-xanthine (DPX) were performed. Systemic administration of CHA, PIA, and NECA for 3 days caused a suppression in heart rate, blood pressure and general motor activity without change in rectal temperature. Systemic administration of CHA, 0.5, 1 and 2 mg/kg/day, for 3 days caused a dose-dependent increase in urine volume and decrease in urinary osmolarity and free water reabsorption. This phenomenon was reversible and repeatable. Administration of adenosine (40 mg/kg/day) produced no apparent effect on the renal function, whereas PIA (2 mg/kg/day) produced an similar effect to CHA on the renal function. Systemic adminstration of NECA, 0.025, 0.05 and 0.25 mg/kg/day, for 3 days caused a dose-dependent increase in urine volume and dose-dependent increases in excreted amount of creatinine, urinary osmolarity and free water reabsorption. These renal effects of adenosine agonist were maximum at second day during the drug administration. In terms of increase in urine volume and the suppression of urinary concentrating ability, NECA was potent than CHA. Prior treatment of caffeine (50 mg/kg/day) or theophylline (50 mg/kg/day) abolished the diuretic effect of CHA, whereas DPX (50 mg/kg/day) did not affect the CHA effect. CHA, 0.5 mg/kg/day, produced no change in plasma renin activity and plasma levels of aldosterone, epinephrine, and norepinephrine. These results suggest that this novel phenomenon produced by an activation of renal adenosine receptors plays an important role in urinary concentrating mechanism.

  • PDF

Regulation of Adenosine-activated GIRK Channels by Gq-coupled Receptors in Mouse Atrial Myocytes

  • Cho, Ha-Na
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.145-150
    • /
    • 2010
  • Adenosine (Ado) is an important mediator of the endogenous defense against ischemia-induced injury in the heart. The action of Ado is mediated by activation of G protein-gated inwardly rectifying $K^+$ (GIRK) channels. In turn, GIRK channels are inhibited by reducing phosphatidylinositol 4,5-bisphosphate ($PIP_2$) through Gq protein-coupled receptors (GqPCRs). We previously found that GIRK channels activated by acetylcholine, a muscarinic M2 acetylcholine receptor agonist, are inhibited by GqPCRs in a receptor-specific manner. However, it is not known whether GIRK channels activated by Ado signaling are also regulated by GqPCRs. Presently, this was investigated in mouse atrial myocytes using the patch clamp technique. GIRK channels were activated by $100\;{\mu}M$ Ado. When Ado was repetitively applied at intervals of 5~6 min, the amplitude of second Ado-activated GIRK currents ($I_{K(Ado)}$) was $88.3{\pm}3.7%$ of the first $I_{K(Ado)}$ in the control. Pretreatment of atrial myocytes with phenylephrine, endothelin-1, or bradykinin prior to a second application of Ado reduced the amplitude of the second $I_{K(Ado)}$ to $25.5{\pm}11.6%$, $30.5{\pm}5.6%$, and $96.0{\pm}2.7%$, respectively. The potency of $I_{K(Ado)}$ inhibition by GqPCRs was different with that observed in acetylcholine-activated GIRK currents ($I_{K(ACh)}$) (endothelin-1>phenylephrine>bradykinin). $I_{K(Ado)}$ was almost completely inhibited by $500\;{\mu}M$ of the $PIP_2$ scavenger neomycin, suggesting low $PIP_2$ affinity of $I_{K(Ado)}$. Taken together, these results suggest that the crosstalk between GqPCRs and the Ado-induced signaling pathway is receptor-specific. The differential change in $PIP_2$ affinity of GIRK channels activated by Ado and ACh may underlie, at least in part, their differential responses to GqPCR agonists.

Inverse Agonists at $A_1$ Adenosine Receptors in Rat Cerebral Cortex (흰쥐의 뇌의$A_1$ 아데노신 수용체에 작용하는 역효현제에 관한 연구)

  • Park, Kyung-Sun;Yang, Wan-Suk;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.23-29
    • /
    • 1996
  • According to the traditional receptor model, competitive antagonists share with agonists the ability to bind to a common site on receptors, but they are different from agonist in that they cannot trigger the biological response-i.e., they lack intrinsic efficacy. Recent findings extend the model by indicating that not all antagonists display an intrinsic efficacy of zero but that some display 'inverse agonism'. In the present study we studied the inverse agonism at $A_1$ adenosine receptors in membranes prepared from rat cerebral cortex. Eight commercially available $A_1$ adenosine receptor antagonists (CGS-15943, ADPX, CPT, DPCPX, DPX, N-0840, PACPX and 8-PT) were screened for inverse agonism by measuring the extent of $[^{35}S]guanosine-5'-({\gamma}-thio)$ triphosphate $([^{35}S]GTP_{\gamma}S)$ binding to G proteins. The agonist-induced stimulation of $[^{35}S]GTP_{\gamma}S$ bindings was completely blocked in the presence of $A_1$ adenosine receptor antagonists. Under optimal conditions, two types of antagonists could be distinguished. Seven antagonists including DPCPX decreased the basal $[^{35}S]GTP_{\gamma}S$ binding in the absence of agonist, displaying inverse agonist activity. One (CGS-15943) had no effect on the basal bindings. N-ethylmaleimide treatment reduced the basal bindings as well as agonist-mediated stimulation of $[^{35}S]GTP_{\gamma}S$ bindings, indicating that a substantial amount of this binding reflects an activated state of the C proteins. In good agreement with these findings, 0.1 mM GTP decreased the apparent affinity of the receptors for the agonist PIA, increased that for DPCPX, and had no effect on that for CGS-15943.

  • PDF

Inhibitory Mechanism of Propranolol on the Effects of VIP in Peripheral Blood T-lymphocytes of Rat (흰쥐 말초혈액 T-림프구에서 Vasoactive Intestinal Polypeptide의 효과에 대한 Propranolol의 억제 기전)

  • Ahn, Young-Soo;Choo, Sung-Yee;Kang, Dong-Won;Lee, Sang-Hun
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.219-231
    • /
    • 1995
  • Vasoactive intestinal polypeptide(VIP) and ${\beta}-adrenergic$ agonists have immunomodultory effects on the peripheral blood T-lymphocytes of rat through their own receptors. Both of them utilize the same signal transduction pathway. That is, the stimulatory guanine nucleotide binding protein(G protein) mediates the receptor-adenylyl cyclase coupling, producing intracellular increase of cyclic adenosine monophosphate(cAMP). In the previous experiment, propranolol, a ${\beta}-adrenergic$ receptor blocker, inhibited the VIP-induced protein phosphorylation in lymphocytes. However, propranolol could not block the effect induced by forskolin. Therefore, this study was designed to elucidate the mechanism of the inhibitory action of propranolol on the effects of VIP. Using peripheral blood lymphocytes of rats, the effect of propranolol on the receptor binding characteristics of VIP was observed. And the effects of propranolol were compared to the effects of timolol on the cAMP increase induced by isoproterenol, VIP or forskolin. The results obtained are as follows. 1) Receptor binding study showed no significant differences in the affinity or density of VIP receptor between the control and propranolol-pretreated groups. 2) VIP-induced increase of cAMP was inhibited by propranolol, but not by timolol. 3) Both propranolol and timolol suppressed the isoproterenol-induced cAMP increase. 4) Propranolol also inhibited the histamine-induced cAMP increase. 5) Propranolol did not inhibit the increase of cAMP stimulated by forskolin. 6) Lidocaine did not block the VIP-induced cAMP increase. These results show that the inhibitory mechanism of propranolol is not related to ${\beta}-adrenergic$ receptor or its membrane stabilizing effect, and it is suggested that propranolol can block the effects of VIP by inhibiting the intermediate step between the VIP receptor and adenylyl cyclase.

  • PDF

YH18968, a Novel 1,2,4-Triazolone G-Protein Coupled Receptor 119 Agonist for the Treatment of Type 2 Diabetes Mellitus

  • Han, Taedong;Lee, Byoung Moon;Park, Yoo Hoi;Lee, Dong Hoon;Choi, Hyun Ho;Lee, Taehoon;Kim, Hakwon
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.201-209
    • /
    • 2018
  • G protein-coupled receptor 119 (GPR119) is expressed in the pancreas and gastrointestinal tract, and its activation promotes insulin secretion in the beta cells of the pancreatic islets as well as the secretion of glucagon-like peptide-1 (GLP-1) in intestinal L cells, consequently improving glucose-stimulated insulin secretion. Due to this dual mechanism of action, the development of small-molecule GPR119 agonists has received significant interest for the treatment of type 2 diabetes. We newly synthesized 1,2,4-triazolone derivatives of GPR119 agonists, which demonstrated excellent outcomes in a cyclic adenosine monophosphate (cAMP) assay. Among the synthesized derivatives, YH18968 showed cAMP=2.8 nM; in GLUTag cell, GLP-1secretion=2.3 fold; in the HIT-T15 cell, and insulin secretion=1.9 fold. Single oral administration of YH18968 improved glucose tolerance and combined treatment with a dipeptidyl peptidase 4 (DPP-4) inhibitor augmented the glucose lowering effect as well as the plasma level of active GLP-1 in normal mice. Single oral administration of YH18968 improved glucose tolerance in a diet induced obese mice model. This effect was maintained after repeated dosing for 4 weeks. The results indicate that YH18968 combined with a DPP-4 inhibitor may be an effective therapeutic candidate for the treatment of type 2 diabetes.

ATP and Purinergic Receptor Agonists Stimulate the Mitogen-Activated Protein Kinase Pathway and DNA Synthesis in Mouse Mammary Epithelial Cells

  • Yuh In-Sub
    • Reproductive and Developmental Biology
    • /
    • v.28 no.4
    • /
    • pp.211-219
    • /
    • 2004
  • The effects of adenosine 5'-triphosphate (ATP) and ATP analogs, P/sub 2y/ purinoceptor agonists, on growth of normal mouse mammary epithelial cells (NMuMG) were examined. Cells were plated onto 24 well plates in DMEM supplemented with 10 % fetal calf serum. After serum starvation for 24 hours, ATP, P/sub 2y/ purinoceptor agonists (AdoPP[NH]P, ATP-α-S, ATP-γ-S, β, γ-me-ATP and 2me-S-ATP), P/sub 2u/ purinoceptor agonist (UTP) and P/sub 2y/ purinoceptor antagonists (Reactive Blue 2, more selective to P/sub 2y/ receptor than PPADS; PPADS) were added. DNA synthesis was estimated as incorporation of 3H-thymidine into DNA (1 hour pulse with 1 μ Ci/ml, 18~19 hours after treatment). ATP, Adopp[NH]P, ATP-α-S or ATP-γ-S, significantly increased DNA synthesis at 1, 10 and 100 μM concentrations with dose-dependency (P<0.05), and the maximum responses of ATP and ATP analogs were shown at 100 μM concentration (P<0.05). The potency order of DNA synthesis was ATP≥ATP- γ -S>Adopp [NH]P>ATP-α-S. β, γ -me-ATP, 2me-S-ATP and UTP did not increase DNA synthesis. In autoradiographic analysis of percentage of S-phase cells, similar results were observed to those of DNA synthesis. Addition of 1, 10 or 100 μM Reactive Blue 2 or PPADS significantly decreased ATP (100 μM)-induced DNA synthesis, however, PPADS was less effective than Reactive Blue 2. In Elvax 40P implant experiment, ATP directly stimulated mammary endbud growth in situ suggesting the physiological regulator of ATP in mammary growth. ATP 100 μM rapidly increased MAPK activity, reaching a maximum at 5 min and then gradually decreasing to the base level in 30 min. ATP analogs, Adopp[NH]P and ATP-γ-S also increased MAPK activity, however, β, γ-me-ATP and 2me-S-ATP did not. The inhibitor of the upstream MAPK kinase (MEK), PD 98059 (25 μM), effectively reduced ATP (100 μM) or EGF(10 ng/ml, as positive control)-induced MAPK activity and DNA synthesis (P<0.05). These results indicate that ATP-induced DNA synthesis was prevented from the direct inhibition of MAPK kinase pathway. Overall results support the hypothesis that the stimulatory effects of normal mouse mammary epithelial growth by addition of ATP or ATP analogs are mediated through mammary tissue specific P/sub 2y/ purinoceptor subtype, and MAPK activation is necessary for the ATP-induced cell growth.

Purinergic Receptors Play Roles in Secretion of Rat von Ebner Salivary Gland

  • Kim, Sang-Hee;Cho, Young-Kyung;Chung, Ki-Myung;Kim, Kyung-Nyun
    • International Journal of Oral Biology
    • /
    • v.31 no.4
    • /
    • pp.141-148
    • /
    • 2006
  • The effects of adenosine triphosphate(ATP) on salivary glands have been recognized since 1982. The presence of purinergic recepetors(P2Rs) that mediate the effects of ATP in various tissues, including parotid and submandibular salivary gland, has been supported by the cloning of receptor cDNAs and the expression of the receptor proteins. P2Rs have many subtypes, and the activation of these receptor subtypes increase intracellular $Ca^{2+}$, a key ion in the regulation of the secretion in the salivary gland. The apical pores of taste buds in circumvallate and foliate papillae are surrounded by the saliva from von Ebner salivary gland(vEG). Thus, it is important how the secretion of vEG is controlled. This study was designed to elucidate the roles of P2Rs on salivary secretion of vEG. Male Sprague-Dawley rats (about 200 g) were used for this experiment. vEG-rich tissues were obtained from dissecting $500-1,000\;{\mu}m$ thick posterior tongue slices under stereomicroscope view. P2Rs mRNA in vEG acinar cells were identified with RT-PCR. To observe the change in intracellular $Ca^{2+}$ activity, we employed $Ca^{2+}-ion$ specific fluorescence analysis with fura-2. Single acinar cells and cell clusters were isolated by a sequential trypsin/collagenase treatment and were loaded with $10\;{\mu}M$ fura -2 AM for 60 minutes at room temperature. Several agonists and antagonists were used to test a receptor specificity. RT-PCR revealed that the mRNAs of $P2X_4$, $P2Y_1$, $P2Y_2$ and $P2Y_3$ are expressed in vEG acinar cells. The intracellular calcium activity was increased in response to $10\;{\mu}M$ ATP, a P2Rs agonist, and 2-MeSATP, a $P2Y_1$ and $P2Y_2R$ agonist. However, $300\;{\mu}M\;{\alpha}{\beta}-MeATP$, a $P2X_1$ and $P2X_3R$ agonist, did not elicit the response. The responses elicited by $10\;{\mu}M$ ATP and UTP, a $P2Y_2R$ agonists, were maintained when extracellular calcium was removed. $10\;{\mu}M$ suramin, a P2XR antagonist, and reactive blue 2, a P2YR antagonist, partially blocked ATP-induced response. However, when extracellular calciums were removed, suramin did not abolish the responses elicited by ATP. These results suggest that P2Rs play an important role in salivary secretion of vEG acinar cells and the effects of ATP on vEG salivary secretion may be mediated by $P2X_4$, $P2Y_1$, $P2Y_2$, and/or $P2Y_3$.

Presynaptic Mechanism Underlying Regulation of Transmitter Release by G Protein Coupled Receptors

  • Takahashi, Tomoyuki;Kajikawa, Yoshinao;Kimura, Masahiro;Saitoh, Naoto;Tsujimoto, Tetsuhiro
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.69-76
    • /
    • 2004
  • A variety of G protein coupled receptors (GPCRs) are expressed in the presynaptic terminals of central and peripheral synapses and play regulatory roles in transmitter release. The patch-clamp whole-cell recording technique, applied to the calyx of Held presynaptic terminal in brainstem slices of rodents, has made it possible to directly examine intracellular mechanisms underlying the GPCR-mediated presynaptic inhibition. At the calyx of Held, bath-application of agonists for GPCRs such as $GABA_B$ receptors, group III metabotropic glutamate receptors (mGluRs), adenosine $A_1$ receptors, or adrenaline ${\alpha}2$ receptors, attenuate evoked transmitter release via inhibiting voltage-activated $Ca^{2+}$ currents without affecting voltage-activated $K^+$ currents or inwardly rectifying $K^+$ currents. Furthermore, inhibition of voltage-activated $Ca^{2+}$ currents fully explains the magnitude of GPCR-mediated presynaptic inhibition, indicating no essential involvement of exocytotic mechanisms in the downstream of $Ca^{2+}$ influx. Direct loadings of G protein ${\beta}{\gamma}$ subunit $(G{\beta}{\gamma})$ into the calyceal terminal mimic and occlude the inhibitory effect of a GPCR agonist on presynaptic $Ca^{2+}$ currents $(Ip_{Ca})$, suggesting that $G{\beta}{\gamma}$ mediates presynaptic inhibition by GPCRs. Among presynaptic GPCRs glutamate and adenosine autoreceptors play regulatory roles in transmitter release during early postnatal period when the release probability (p) is high, but these functions are lost concomitantly with a decrease in p during postnatal development.