• Title/Summary/Keyword: Adductor magnus

Search Result 8, Processing Time 0.021 seconds

The Correlation of Hip Abductor, Adductor and Abdominis, Low Limb Muscle Activation During Bridging Exercise with Hip Abductor and Adductor Contraction (고관절 내.외전근 수축을 이용한 교각 운동에서의 내.외전근과 복부 및 하지근육과의 상관관계 연구)

  • Lee, Sang-Yeol
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.2
    • /
    • pp.199-203
    • /
    • 2012
  • Purpose : Bridging exercise was used most frequently of lumbar stabilization exercise. There has been no reserch regarding the bridging exercise according to hip abductor activation or hip adductor activation. The purpose of this study is to determine correlation of hip abductor, adductor and abdominal muscles, lower limb muscle. Methods : Participants who met the criteria for this study (n=45). Participants performs bridging exercise on three types (normal bridging exercise, bridging exercise with hip abductor contraction, bridging exercise with hip adductor contraction) for evaluate correlation of each muscles. Results : There was a significant negative correlation between adductor magnus and gluteus medius, adductor magnus and rectus femoris. And there was a positive correlation between gluteus medius and rectus femoris on normal bridging exercise (p<0.05). There was a significant positive correlation between adductor magnus and gluteus medius, transverse abdominis, and between gulteus medius and transverse abdominis on bridging exercise with adductor magnus activation (p<0.05). There was a significant positive correlation between adductor magnus and gluteus medius, rectus femoris, and between gulteus medius and rectus femoris on bridging exercise with gluteus medius activation (p<0.05). Conclusion : When we perform bridging exercise for transverse abdominis activation and increase pressure in the abdmen, bridging exercise with hip adductor contraction is more effective than normal bridging exercise and bridging exercise with hip abductor contraction.

Acute pyomyositis of the adductor magnus muscle involving the posterior and lateral thigh compartments: a case report of diagnosis and management

  • Bawale, Rajesh;Watson, Jay;Yusuf, Karshe;Pillai, Dilip;Singh, Bijayendra
    • Journal of Trauma and Injury
    • /
    • v.35 no.2
    • /
    • pp.139-143
    • /
    • 2022
  • Bacterial infection of skeletal muscle can lead to the formation of abscesses. Primary pyomyositis is typically seen in tropical countries, and Staphylococcus aureus is the commonest causative organism. We present a case of acute adductor magnus muscle abscess (pyomyositis) with spread to adjacent thigh compartments via the perforators without iliopsoas muscle involvement. Due to the involvement of the entire thigh compartment, systemic antibiotic treatment alone was insufficient, whereas surgical drainage improved the clinical picture. The aetiological organism was S. aureus. Herein, we report the case of a patient who had primary pyomyositis, rather than a secondary type, that spread to the posterior and lateral aspect of the thigh through the second and third perforators, which pierce the adductor magnus muscle belly before entering the femur.

Reconstruction of Ischial Soft Tissue Defects using Adductor Magnus Perforator Island Flap (대내전근 천공지 도상 피판을 이용한 좌골부 연부조직결손의 재건)

  • Kim, Eui Sik;Park, Jang Wan;Hwang, Jae Ha;Kim, Kwang Seog;Lee, Sam Yong
    • Archives of Plastic Surgery
    • /
    • v.36 no.5
    • /
    • pp.559-564
    • /
    • 2009
  • Purpose: Surgical reconstruction of an ischial soft tissue defect presents a challenging problem owing to a high rate of recurrence, especially paraplegic patients. Although various muscle, musculocutaneous and fasciocuta - neous flaps have been used in the reconstruction of ischial soft tissue defect, it is still debated which type of flaps are the best. We had performed a relatively durable adductor magnus perforator island flap based on the perforators originated from the first medial branch of the profunda femoris artery for coverage of ischial soft tissue defect where was not a region universally reconstructed by perforator flap. Methods: From August 2005 until January 2008, the adductor magnus perforator island flap had been used for resurfacing of the ischial soft tissue defects in a series of 6 patients (4 male and 2 female). Ages ranged from 26 to 67 years (mean, 47.5 years), and follow - up period from 13 to 26 months (mean, 16.7 months). Causes were 4 pressure ulcers, 1 cellulitis and 1 suppurative keratinous cyst. Results: The sizes of these flaps ranged from 12 to 18 cm in length and 7 to 9 cm in width. The flaps survived in all patients. Marginal loss over the distal area of the flap by infection was noted in one patient, which was treated successfully with a subsequent split - thickness skin graft. Average thickness of the flap was 0.94 cm, which was more thicker than other perforator flaps. Long term follow - up showed a good flap durability. Conclusion: In planning a reconstructive option of ischial soft tissue defect, the adductor magnus perforator island flap is a relatively large cutaneous flap with a durable thickness. With proper patient selection, careful vascular dissection and postoperative management, we recommend this flap is a good and suitable option for coverage of the ischial soft tissue defect.

New insight into the vasto-adductor membrane for safer adductor canal blockade

  • Yanguk Heo;Miyoung Yang;Sung Min Nam;Hyun Seung Lee;Yeon-Dong Kim;Hyung-Sun Won
    • The Korean Journal of Pain
    • /
    • v.37 no.2
    • /
    • pp.132-140
    • /
    • 2024
  • Background: This study aimed to identify exact anatomical landmarks and ideal injection volumes for safe adductor canal blocks (ACB). Methods: Fifty thighs from 25 embalmed adult Korean cadavers were used. The measurement baseline was the line connecting the anterior superior iliac spine (ASIS) to the midpoint of the patellar base. All target points were measured perpendicular to the baseline. The relevant cadaveric structures were observed using ultrasound (US) and confirmed in living individuals. US-guided dye injection was performed to determine the ideal volume. Results: The apex of the femoral triangle was 25.3 ± 2.2 cm distal to the ASIS on the baseline and 5.3 ± 1.0 cm perpendicular to that point. The midpoint of the superior border of the vasto-adductor membrane (VAM) was 27.4 ± 2.0 cm distal to the ASIS on the baseline and 5.0 ± 1.1 cm perpendicular to that point. The VAM had a trapezoidal shape and was connected as an aponeurosis between the medial edge of the vastus medialis muscle and lateral edge of the adductor magnus muscle. The nerve to the vastus medialis penetrated the muscle proximal to the superior border of the VAM in 70% of specimens. The VAM appeared on US as a hyperechoic area connecting the vastus medialis and adductor magnus muscles between the sartorius muscle and femoral artery. Conclusions: Confirming the crucial landmark, the VAM, is beneficial when performing ACB. It is advisable to insert the needle obliquely below the superior VAM border, and a 5 mL injection is considered sufficient.

Botulinum Toxin Therapy in a Patient with HHH Syndrome with Gait Disturbance: A Case Report

  • Kim, Dong-Hyun;Choi, Yoon-Hee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.2
    • /
    • pp.105-108
    • /
    • 2021
  • Background : Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a rare, autosomal recessive metabolic disorder which is caused by genetic mutations that disrupt the urea cycle. It is characterized by variable clinical presentation and the age of onset. Patients may present with gait disturbance and progressive paraplegia and muscle tightness in the lower extremities. The use of botulinum toxin in metabolic disease has rarely been discussed. We describe a case of a 14-year-old-boy with HHH syndrome, who presented with a several - month history of gait disturbance and lower extremity weakness. Case presentation : A 14-year old male had a history of recurrent upper respiratory tract infections, occasional vomiting, loss of appetite, and general weakness, all of which started since he was 10 months old. He was diagnosed with HHH syndrome at one year of age. At the age of 14, he was referred for the assessment and treatment of his gait disturbance and aggravated weakness of the lower extremities. Brain MRI, electrodiagnostic study and blood test were performed to exclude any lesions related to neurologic dysfunction. Botulinum toxin type A were injected into muscles of adductor longus, adductor magnus, lateral and medial hamstring, and lateral and medial gastrocnemius muscle heads under needle electromyography guidance to reduce lower limb spasticity. Intensive physical therapy including gait training and stretching exercise of adductor and calf muscles were also provided. After intensive physical therapy and botulinum toxin injection to reduce lower limb spasticity, he was able to ambulate for 20 meters independently without any walking aids. There were no adverse events after the injection. Conclusion : Botulinum toxin injection is a safe and effective therapy for patients with HHH syndrome who suffer from gait disturbance.

Anatomical Observation on Components Related to Foot Gworeum Meridian Muscle in Human

  • Park, Kyoung-Sik
    • The Journal of Korean Medicine
    • /
    • v.32 no.3
    • /
    • pp.1-9
    • /
    • 2011
  • Objectives: This study was carried out to observe the foot gworeum meridian muscle from a viewpoint of human anatomy on the assumption that the meridian muscle system is basically matched to the meridian vessel system as a part of the meridian system, and further to support the accurate application of acupuncture in clinical practice. Methods: Meridian points corresponding to the foot gworeum meridian muscle at the body surface were labeled with latex, being based on Korean standard acupuncture point locations. In order to expose components related to the foot gworeum meridian muscle, the cadaver was then dissected, being respectively divided into superficial, middle, and deep layers while entering more deeply. Results: Anatomical components related to the foot gworeum meridian muscle in human are composed of muscles, fascia, ligament, nerves, etc. The anatomical components of the foot gworeum meridian muscle in cadaver are as follows: 1. Muscle: Dorsal pedis fascia, crural fascia, flexor digitorum (digit.) longus muscle (m.), soleus m., sartorius m., adductor longus m., and external abdominal oblique m. aponeurosis at the superficial layer, dorsal interosseous m. tendon (tend.), extensor (ext.) hallucis brevis m. tend., ext. hallucis longus m. tend., tibialis anterior m. tend., flexor digit. longus m., and internal abdominal oblique m. at the middle layer, and finally posterior tibialis m., gracilis m. tend., semitendinosus m. tend., semimembranosus m. tend., gastrocnemius m., adductor magnus m. tend., vastus medialis m., adductor brevis m., and intercostal m. at the deep layer. 2. Nerve: Dorsal digital branch (br.) of the deep peroneal nerve (n.), dorsal br. of the proper plantar digital n., medial br. of the deep peroneal n., saphenous n., infrapatellar br. of the saphenous n., cutaneous (cut.) br. of the obturator n., femoral br. of the genitofemoral n., anterior (ant.) cut. br. of the femoral n., ant. cut. br. of the iliohypogastric n., lateral cut. br. of the intercostal n. (T11), and lateral cut. br. of the intercostal n. (T6) at the superficial layer, saphenous n., ant. division of the obturator n., post. division of the obturator n., obturator n., ant. cut. br. of the intercostal n. (T11), and ant. cut. br. of the intercostal n. (T6) at the middle layer, and finally tibialis n. and articular br. of tibial n. at the deep layer. Conclusion: The meridian muscle system seemed to be closely matched to the meridian vessel system as a part of the meridian system. This study shows comparative differences from established studies on anatomical components related to the foot gworeum meridian muscle, and also from the methodical aspect of the analytic process. In addition, the human foot gworeum meridian muscle is composed of the proper muscles, and also may include the relevant nerves, but it is as questionable as ever, and we can guess that there are somewhat conceptual differences between terms (that is, nerves which control muscles in the foot gworeum meridian muscle and those which pass nearby) in human anatomy.

Sustantial Observation on Foot Taeyang Meridian Muscle in Human Lower Limb from a Anatomical Viewpoint

  • Park, Kyoung-Sik
    • Journal of Pharmacopuncture
    • /
    • v.12 no.2
    • /
    • pp.21-29
    • /
    • 2009
  • Objective : This study was carried to identify the anatomical component of FTMM(Foot Taeyang Meridian Muscle) in human lower limb, and further to help the accurate application to real acupuncture. Methods : FTM at the surface of the lower limb was labelled with latex. And cadaver was stripped off to demonstrate muscles, nerves and the others and to display the internal structures of FTMM, being divided into outer, middle, and inner layer. Results : FTMM in human lower limb is composed of muscles, nerves, ligaments etc. The internal composition of the FTMM in human lower limb are as follows : 1) Muscle : Gluteus maximus. biceps femoris, semitendinosus, gastrocnemius, triceps calf, fibularis brevis tendon, superior peroneal retinacula, calcaneofibular ligament, inferior extensor retinaculum, abductor digiti minimi, sheath of flexor tendon at outer layer, biceps femoris, semimembranosus, plantaris, soleus, posterior tibialis, fibularis brevis, extensor digitorum brevis, flexor digiti minimi at middle layer, and for the last time semimembranosus, adductor magnus, plantaris, popliteus, posterior tibialis, flexor hallucis longus, dorsal calcaneocuboidal ligament at inner layer. 2) Nerve : Inferior cluneal nerve, posterior femoral cutaneous n., sural cutaneous n., proper plantar branch of lateral plantar n. at outer layer, sciatic nerve, common peroneal n., medial sural cutaneous n., tibial n. at middle layer, and for the last time tibial nerve, flexor hallucis longus branch of tibial n. at inner layer. Conclusions : This study proves comparative differences from already established studies from the viewpoint of constituent elements of FTMM in the lower limb, and also in the aspect of substantial assay method. We can guess that there are conceptional differences between terms (that is, nerves which control muscles of FTMM and those which pass near by FTMM) in human anatomy.

Quantification of the Elastic Property of Normal Thigh Muscles Using MR Elastography: Our Initial Experience (자기 공명 탄성 검사를 이용한 대퇴 근육의 탄성도의 정량화: 초기 경험)

  • Junghoon Kim;Jeong Ah Ryu;Juhan Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.6
    • /
    • pp.1556-1564
    • /
    • 2021
  • Purpose This study aimed to apply MR elastography (MRE) to achieve in vivo evaluation of the elastic properties of thigh muscles and validate the feasibility of quantifying the elasticity of normal thigh muscles using MRE. Materials and Methods This prospective study included 10 volunteer subjects [mean age, 32.5 years, (range, 23-45 years)] who reported normal activities of daily living and underwent both T2-weighted axial images and MRE of thigh muscles on the same day. A sequence with a motion-encoding gradient was used in the MRE to map the propagating shear waves in the muscle. Elastic properties were quantified as the shear modulus of the following four thigh muscles at rest; the vastus medialis, vastus lateralis, adductor magnus, and biceps femoris. Results The mean shear modulus was 0.98 ± 0.32 kPa and 1.00 ± 0.33 kPa for the vastus medialis, 1.10 ± 0.46 kPa and 1.07 ± 0.43 kPa for the vastus lateralis, 0.91 ± 0.41 kPa and 0.93 ± 0.47 kPa for the adductor magnus, and 0.99 ± 0.37 kPa and 0.94 ± 0.32 kPa for the biceps femoris, with reader 1 and 2, respectively. No significant difference was observed in the shear modulus based on sex (p < 0.05). Aging consistently showed a statistically significant negative correlation (p < 0.05) with the shear modulus of the thigh muscles, except for the vastus medialis (p = 0.194 for reader 1 and p = 0.355 for reader 2). Conclusion MRE is a quantitative technique used to measure the elastic properties of individual muscles with excellent inter-observer agreement. Age was consistently significantly negatively correlated with the shear stiffness of muscles, except for the vastus medialis.