• Title/Summary/Keyword: Addressing

Search Result 1,641, Processing Time 0.032 seconds

Eliciting Curiosity from Indifference: Action Research of an Elementary Science Teacher Educator Aimed at Stimulating Preservice Elementary School Teachers' Curiosity and Interest Physics (무관심에서 호기심으로 -초등예비교사의 물리에 대한 호기심과 흥미 향상을 위한 초등과학 교사교육자의 실행연구-)

  • Jiwon Lee
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.6
    • /
    • pp.533-547
    • /
    • 2023
  • This study is an action research aimed at improving the instruction of a teacher educator who teaches science teaching methods to elementary preservice teachers. After identifying the cause of their low levels of curiosity and interest in physics, teaching plans addressing this problem were explored, applied to classes, and reflected upon. Through this process, ways to improve teaching practice in science classes for elementary preservice teachers and pique their scientific curiosity and interest were proposed. A spiral implementation structure that repeats implementation and reflection a total of three times was designed for the prospective preservice teachers who participated in elementary science textbook research physics classes. Self-reports, student participation data, and results from both peer and self-evaluations were collected and analyzed. The reasons for the preservice teachers' low levels of curiosity and interest in science were identified as their inability to recognize and express information gaps and their low levels of willingness to resolve this. Practice expressing information gaps, raising the level of knowledge to be able to recognize information gaps, and a strategy to have the will to resolve information gaps were introduced into the class. To the extent that changes can be made by improving unit classes, elementary preservice teachers can express their curiosity and interest in science through this process.

Psychosomatic Symptoms Following COVID-19 Infection (코로나19 감염과 그 이후의 정신신체증상)

  • Sunyoung Park;Shinhye Ryu;Woo Young Im
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.31 no.2
    • /
    • pp.72-78
    • /
    • 2023
  • Objectives : This study aims to identify various psychiatric symptoms and psychosomatic symptoms caused by COVID-19 infection and investigate their long-term impact. Methods : A systematic literature review was conducted, selecting papers from domestic and international databases using keywords such as "COVID-19" and "psychosomatic." A total of 16 papers, including those using structured measurement tools for psychosomatic symptoms, were included in the final analysis. Results : Psychiatric symptoms such as anxiety, depression, and somatic symptoms have been reported in acute COVID-19 infection, while long-term post-COVID symptoms include chest pain and fatigue. The frequency of long-term psychosomatic symptoms has been estimated to be 10%-20%. Factors contributing to these symptoms include psychological and social stress related to infectious diseases, gender, elderly age, a history of psychiatric disorders, and comorbid mental illnesses. It is suggested that systemic inflammation, autoimmune responses, and dysregulation of the autonomic nervous system may be involved. Conclusions : Psychosomatic symptoms arising after COVID-19 infection have a negative impact on quality of life and psychosocial functioning. Understanding and addressing psychiatric aspects are crucial for symptom prevention and treatment.

Effect of Molecular Weight Distribution of Intrinsically Microporous Polymer (PIM-1) Membrane on the CO2 Separation Performance (마이크로기공 고분자(PIM-1)의 분자량 분포에 따른 이산화탄소 기체 분리막의 성능 변화 연구)

  • Ji Min Kwon;Hye Jeong Son;Jin Uk Kim;Chang Soo Lee
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.362-368
    • /
    • 2023
  • This research article explores the application of Polymer of Intrinsic Microporosity (PIM-1) as a cutting-edge material for CO2 gas separation membranes in response to the escalating global concern over climate change and the imperative to reduce greenhouse gas emissions. The study delves into the synthesis, molecular weight control, and fabrication of PIM-1 membranes, providing comprehensive insights through various characterization techniques. The intrinsic microporosity of PIM-1, arising from its unique crosslinked and rigid structure, is harnessed for selective gas permeation, particularly of carbon dioxide. The article emphasizes the tunable chemical properties of PIM-1, allowing for customization and optimization of gas separation membranes. By controlling the molecular weight, higher molecular weight (H-PIM-1) membranes are demonstrated to exhibit superior CO2 permeability and selectivity compared to lower molecular weight counterparts (L-PIM-1). The study's findings highlight the critical role of molecular weight in tailoring PIM-1 membrane properties, contributing to the advancement of next-generation membrane technologies for efficient and selective CO2 capture-an essential step in addressing the pressing global challenge of climate change.

Assessment of Combined Administration of Hypoglycemic Agents and Herbal Extracts (Pyeongwi-san or HyangsaPyongwi-san) on Blood Glucose Levels in Type 2 Diabetes Mellitus: A Retrospective Study (표준 치료를 받고 있는 제2형 당뇨병 환자에서 혈당강하제와 평위산 및 향사평위산 병용 투여가 혈당에 미치는 영향 및 안정성 연구)

  • Woo-nyoung Jung;Seung-hyun Oh;Mee-ryoung Song;Ji-won Noh;Young-min Ahn;Se-young Ahn;Byung-cheol Lee
    • The Journal of Internal Korean Medicine
    • /
    • v.44 no.4
    • /
    • pp.661-674
    • /
    • 2023
  • Abstract: This retrospective study delved into the effects and safety considerations associated with the concomitant usage of hypoglycemic agents and herbal extracts, specifically Pyeongwi-san (PWS) or HyangsaPyongwi-san (HSPWS) in the context of type 2 diabetes mellitus management. Methods: The investigation involved 38 inpatients with type 2 diabetes mellitus who received PWS or HSPWS treatment at Kyung Hee University Korean Medical Hospital from January 2012 to December 2022. By investigating clinical attributes and conducting laboratory assessments, this study aimed to discern the impact of these herbal extracts on blood glucose levels, encompassing fasting blood sugar (FBS) and mean 2-hour postprandial glucose (PP2) levels. Furthermore, the safety profile of the herbal extracts was assessed by comparing liver function indicators, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), and γ-glutamyl transferase (GGT), alongside kidney function markers, such as blood urea nitrogen (BUN) and creatinine (Cr). Results: Following the administration of the herbal extracts, no statistically significant alterations in FBS and mean PP2 levels emerged compared to the baseline levels. Notably, the safety evaluation revealed no significant differences in liver and kidney function parameters following herbal extract administration. Conclusion: The results of this research indicate that using PWS or HSPWS alongside hypoglycemic medications could be a beneficial additional method for addressing digestive symptoms in individuals with type 2 diabetes mellitus. Notably, this combination seems to have no negative interactions with other drugs.

Study of the Application of VQA Deep Learning Technology to the Operation and Management of Urban Parks - Analysis of SNS Images - (도시공원 운영 및 관리를 위한 VQA 딥러닝 기술 활용 연구 - SNS 이미지 분석을 중심으로 -)

  • Lee, Da-Yeon;Park, Seo-Eun;Lee, Jae Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.5
    • /
    • pp.44-56
    • /
    • 2023
  • This research explores the enhancement of park operation and management by analyzing the changing demands of park users. While traditional methods depended on surveys, there has been a recent shift towards utilizing social media data to understand park usage trends. Notably, most research has focused on text data from social media, overlooking the valuable insights from image data. Addressing this gap, our study introduces a novel method of assessing park usage using social media image data and then applies it to actual city park evaluations. A unique image analysis tool, built on Visual Question Answering (VQA) deep learning technology, was developed. This tool revealed specific city park details such as user demographics, behaviors, and locations. Our findings highlight three main points: (1) The VQA-based image analysis tool's validity was proven by matching its results with traditional text analysis outcomes. (2) VQA deep learning technology offers insights like gender, age, and usage time, which aren't accessible from text analysis alone. (3) Using VQA, we derived operational and management strategies for city parks. In conclusion, our VQA-based method offers significant methodological advancements for future park usage studies.

Performance Characteristics of an Ensemble Machine Learning Model for Turbidity Prediction With Improved Data Imbalance (데이터 불균형 개선에 따른 탁도 예측 앙상블 머신러닝 모형의 성능 특성)

  • HyunSeok Yang;Jungsu Park
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.107-115
    • /
    • 2023
  • High turbidity in source water can have adverse effects on water treatment plant operations and aquatic ecosystems, necessitating turbidity management. Consequently, research aimed at predicting river turbidity continues. This study developed a multi-class classification model for prediction of turbidity using LightGBM (Light Gradient Boosting Machine), a representative ensemble machine learning algorithm. The model utilized data that was classified into four classes ranging from 1 to 4 based on turbidity, from low to high. The number of input data points used for analysis varied among classes, with 945, 763, 95, and 25 data points for classes 1 to 4, respectively. The developed model exhibited precisions of 0.85, 0.71, 0.26, and 0.30, as well as recalls of 0.82, 0.76, 0.19, and 0.60 for classes 1 to 4, respectively. The model tended to perform less effectively in the minority classes due to the limited data available for these classes. To address data imbalance, the SMOTE (Synthetic Minority Over-sampling Technique) algorithm was applied, resulting in improved model performance. For classes 1 to 4, the Precision and Recall of the improved model were 0.88, 0.71, 0.26, 0.25 and 0.79, 0.76, 0.38, 0.60, respectively. This demonstrated that alleviating data imbalance led to a significant enhancement in Recall of the model. Furthermore, to analyze the impact of differences in input data composition addressing the input data imbalance, input data was constructed with various ratios for each class, and the model performances were compared. The results indicate that an appropriate composition ratio for model input data improves the performance of the machine learning model.

The Current State of Intended Equipment for Heating in Medical Use Based on Domestic Licensed Medical Devices (국내 인·허가 온열의료기기 기술 현황 조사 및 분석)

  • Su-Ran Lim;Jung-Hwan Park;Ji-Yeun Park;Song-Yi Kim
    • Korean Journal of Acupuncture
    • /
    • v.40 no.4
    • /
    • pp.156-168
    • /
    • 2023
  • Objectives : This study aimed to determine the status of thermal stimulation devices approved in Korea for medical applications over the past 10 years, and based on this, to obtain insight for future thermal treatment in Korean medical institutions. Methods : We searched the item classification list entitled "Regulations on Medical Device Items and Rating by Item" from the Ministry of Food and Drug Safety Notice No. 2021-24, 2021 (Enforced March 19, 2021; www.mfds.go.kr) for individually licensed heaters using the terms "heat" and "heating". Results : We identified 17 items of thermal stimulation product group, of which 1,308 devices were licensed by February 4, 2022, and 53.2% of them (n=696) were devices with valid permits for distribution in Korea. Among the licensed devices, heating pad systems under/overlay (electric, home use) were approved the most, but combinational stimulator (for medical use, home use; Grade 2) accounted for the highest percentage among the current valid permission. Moxibustion apparatuses were licensed separately for electrical use and non-electrical use, and occupied a low percentage of the total devices. We analyzed 307 devices that were accompanied by technical documents and found that the heat sources were wires in 145 (47.2%), infrared rays in 44 (14.3%) and ultrasonic waves in 42 (13.7%) devices. Most (83.1%) devices were used for pain relief, while other applications included beauty, cancer treatment, maintenance of infant body temperature, and healing fractures. Conclusions : Thermal stimulation devices accounted for about 0.9% of all medical devices, and among them, combinational stimulators and heating pad systems under/overlay had the most valid permits. Thermal stimulation devices using heating wires and infrared rays were the most prevalent, and most were used to relieve pain. In order to develop a range of thermal stimulation devices that can be utilized in Korean medical institutions, it is imperative that they have potential applications beyond pain management, addressing various medical purposes. To achieve this, foundational research is necessary to effectively apply diverse heat sources based on medical objectives.

A Study on the Hazard Area of Bunkering for Ammonia Fueled Vessel (암모니아 연료추진 선박의 벙커링 누출 영향에 관한 연구)

  • Ilsup Shin;Jeongmin Cheon;Jihyun Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.964-970
    • /
    • 2023
  • As part of the International Maritime Organization ef orts to reduce greenhouse gas emissions, the maritime industry is exploring low-carbon fuels such as liquefied natural gas and methanol, as well as zero-carbon fuels such as hydrogen and ammonia, evaluating them as environmentally friendly alternatives. Particularly, ammonia has substantial operational experience as cargo on transport ships, and ammonia ship engines are expected to be available in the second half of 2024, making it relatively accessible for commercial use. However, overcoming the toxicity challenges associated with using ammonia as a fuel is imperative. Detection is possible at levels as low as 5 ppm through olfactory senses, and exposure to concentrations exceeding 300 ppm for more than 30 min can result in irreparable harm. Using the KORA program provided by the Chemical Safety Agency, an assessment of the potential risks arising from leaks during ammonia bunkering was conducted. A 1-min leak could lead to a 5 ppm impact within a radius of approximately 7.5 km, affecting key areas in Busan, a major city. Furthermore, the potentially lethal concentration of 300 ppm could have severe consequences in densely populated areas and schools near the bunkering site. Therefore, given the absence of regulations related to ammonia bunkering, the potential for widespread toxicity from even minor leaks highlights the requirement for the development of legislation. Establishing an integrated system involving local governments, fire departments, and environmental agencies is crucial for addressing the potential impacts and ensuring the safety of ammonia bunkering operations.

A Model for Supporting Information Security Investment Decision-Making Considering the Efficacy of Countermeasures (정보보호 대책의 효과성을 고려한 정보보호 투자 의사결정 지원 모형)

  • Byeongjo Park;Tae-Sung Kim
    • Information Systems Review
    • /
    • v.25 no.4
    • /
    • pp.27-45
    • /
    • 2023
  • The importance of information security has grown alongside the development of information and communication technology. However, companies struggle to select suitable countermeasures within their limited budgets. Sönmez and Kılıç (2021) proposed a model using AHP and mixed integer programming to determine the optimal investment combination for mitigating information security breaches. However, their model had limitations: 1) a lack of objective measurement for countermeasure efficacy against security threats, 2) unrealistic scenarios where risk reduction surpassed pre-investment levels, and 3) cost duplication when using a single countermeasure for multiple threats. This paper enhances the model by objectively quantifying countermeasure efficacy using the beta probability distribution. It also resolves unrealistic scenarios and the issue of duplicating investments for a single countermeasure. An empirical analysis was conducted on domestic SMEs to determine investment budgets and risk levels. The improved model outperformed Sönmez and Kılıç's (2021) optimization model. By employing the proposed effectiveness measurement approach, difficulty to evaluate countermeasures can be quantified. Utilizing the improved optimization model allows for deriving an optimal investment portfolio for each countermeasure within a fixed budget, considering information security costs, quantities, and effectiveness. This aids in securing the information security budget and effectively addressing information security threats.

Spatial Analysis of Carbon Storage in Satellite Radar Imagery Utilizing Sentinel-1: A Case Study of the Ungok Wetlands (위성 레이더 영상 중 Sentinel-1을 활용한 탄소 흡수원 공간분석 - 운곡습지를 대상으로 -)

  • Ha-Eun Yu;Young-Il Cho;Shin-Woo Lee;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1731-1745
    • /
    • 2023
  • Within the framework of the post-2020 climate regime, the Paris Agreement's emphasis on Nationally Determined Contributions and Biennial Transparency Reporting is paramount in addressing its long-term temperature goal. A salient issue is the treatment of wetland ecosystems within the context of Land Use, Land-Use Change, and Forestry, as defined by the Intergovernmental Panel on Climate Change. In the 2019 National Inventory Report, wetlands were recategorized as emission sources due to their designation as inundated areas. This study employs C-band radar imagery to discriminate between inundated and non-inundated regions of wetlands, enabling the quantification of their spatial dynamics. The research capitalizes on 24-period Sentinel-1 satellite data to cover both the inundation and desiccation phases while centering its attention on Ungok Wetland, a Ramsar-designated inland wetland conservation area in Korea. The inundated area is quantitatively assessed through the integration of multi-temporal Sentinel-1 Single-Look Complex (SLC) data, aerial orthophotography, and inland wetland spatial information. Furthermore, the study scrutinizes fluctuations in the maximum and minimum inundated areas, with substantial changes corroborated via drone aerial reconnaissance. The outcomes of this investigation hold the potential to make substantive contributions to the refinement of national greenhouse gas absorption and emission factors, thereby informing the development of comprehensive greenhouse gas inventories. These efforts align directly with the overarching objectives of the Paris Agreement.