Weather is the most influential factor for crop cultivation. Weather information for cultivated areas is necessary for growth and production forecasting of agricultural crops. However, there are limitations in the meteorological observations in cultivated areas because weather equipment is not installed. This study tested methods of predicting the daily mean temperature in onion fields using geostatistical models. Three models were considered: inverse distance weight method, generalized additive model, and Bayesian spatial linear model. Data were collected from the AWS (automatic weather system), ASOS (automated synoptic observing system), and an agricultural weather station between 2013 and 2016. To evaluate the prediction performance, data from AWS and ASOS were used as the modeling data, and data from the agricultural weather station were used as the validation data. It was found that the Bayesian spatial linear regression performed better than other models. Consequently, high-resolution maps of the daily mean temperature of Jeonnam were generated using all observed weather information.
Journal of the Korean Data and Information Science Society
/
제27권5호
/
pp.1215-1224
/
2016
고해상도 격자 단위 기후정보는 농업, 관광학, 생태학, 질병학 등 다양한 분야의 현상을 설명하는 중요 요인이다. 고해상도 기후정보는 동적 모형과 통계적 모형을 통해 얻을 수 있다. 통계적 모형은 동적 모형에 비해 계산 시간이 저렴하여 시공간 해상도가 높은 기후자료 생성에 주로 이용한다. 본 연구에서는 2003년부터 2012년까지 1월에 관측된 일 평균기온자료를 토대로 통계적 모형의 일 평균 기온을 생성하였다. 통계적 모형으로 선형모형을 기반으로한 일반선형모형, 일반화가법모형, 공간선형모형, 베이지안공간선형모형을 고려하였다. 예측성능평가를 위해 60개소의 지상관측소에서 관측된 일 평균기온을 모형적합 자료로 사용하여 352개소의 자동기상관측의 일 평균기온을 검증하였다. 평균제곱오차와 상관계수를 보면 베이지안공간모형의 예측성능이 다른 모형에 비해 상대적으로 우수하였다. 최종적으로 $1km{\times}1km$ 격자 단위 일 평균기온 지도를 생성하였다.
Credit scoring is an objective and automatic system to assess the credit risk of each customer. The logistic regression model is one of the popular methods of credit scoring to predict the default probability; however, it may not detect possible nonlinear features of predictors despite the advantages of interpretability and low computation cost. In this paper, we propose to use a generalized partially linear model as an alternative to logistic regression. We also introduce modern ensemble technologies such as bagging, boosting and random forests. We compare these methods via a simulation study and illustrate them through a German credit dataset.
In order to enhance sustainable war fighting capabilities, it is important to maintain a good ammunition support system. In this paper, we evaluate the performance of ammunition companies using Imprecise Data Envelopment Analysis (IDEA)-BCC and IDEA-Additive model, which can deal with imprecise data in DEA. The input variables of IDEA models were selected by stepwise multiple regression analysis. With the regression model, we could choose the number of soldiers, officers, and ammunition warehouses as input variables that have significant effects on the output performance. Then, we applied the IDEA-BCC model with the concept of potential efficiency. The results of the model indicate that 8 out of 16 ammunition companies are efficient, 7 are inefficient, and 1 is potentially efficient. We could also identify the possible input excesses and output shortfalls to reach the efficient frontier using the IDEA-Additive model.
일반화가법모형은 기존 선형회귀모형의 문제점을 대부분 해결한 통계모형이지만 의미있는 독립변수의 수를 줄이는 방법이 적용되지 않을 경우 과대적합 문제가 발생할 수 있다. 그러므로 일반화가법모형에서 변수 축소방법을 적용하는 연구가 필요하다. 회귀분석에서 변수 축소방법으로 최근에는 Lasso 계열의 접근법이 연구되고 있다. 본 연구에서는 활용성이 높은 통계모형인 일반화가법모형에 Lasso 계열의 모형 중에서 Group Lasso와 Elastic net 모형을 적용하는 방법을 제시하고 이들의 해를 구하는 절차를 제안하였다. 그리고 제안된 방법을 모의실험과 실제자료인 회계년도 2005년 자동차보혐 자료에 적용을 통해 비교하여 보았다. 그 결과 본 논문에서 제안한 Group Lasso와 Elastic net을 이용하여 변수 축소를 통한 일반화가법모형이 기존의 방법보다 더 나은 결과를 제공하는 것으로 분석 되었다.
수리 또는 계량적 모형을 사용하는 사회과학연구에서 분석의 초점은 종속변수와 설명변수의 관계를 밝히는 것, 즉 설명 중심의 모형(explanatory modeling)이 지금까지 주류를 이루었다. 반면 예측(prediction) 능력 제고에 초점을 맞춘 분석은 드물었다. 본 연구에서는 이론 및 가설을 검증하거나 변수 간의 관계를 밝히는 설명 중심의 모형이 아니라 신규 관찰치에 대한 예측 오차를 줄이는, 예측 중심의 비모수 모형(non-parametric model)을 검토하였다. 서울시 강남구를 사례지역으로 선정한 후, 2011년부터 2014년까지 신고된 단독주택 실거래가를 기초자료로 하여 주택가격을 추정하였다. 적용한 비모수 모형은 기계학습 분야에서 제시된 일반가산모형(generalized additive model), 랜덤 포리스트, MARS(multivariate adaptive regression splines), SVM(support vector machines) 등이며 비교적 최근에 개발된 MARS나 SVM의 예측력이 뛰어남을 확인할 수 있었다. 마지막으로 이러한 비모수 모형에 공간적 자기상관성을 추가적으로 반영한 결과, 모형의 가격 예측력이 보다 개선되었음을 알 수 있었다. 본 연구를 계기로 그간 모수 모형에 집중되었던 부동산 가격추정 방법론이 비모수 모형으로 확대 및 다양화되기를 기대한다.
Padilha, Alessandro Haiduck;Cobuci, Jaime Araujo;Costa, Claudio Napolis;Neto, Jose Braccini
Asian-Australasian Journal of Animal Sciences
/
제29권6호
/
pp.759-767
/
2016
The aim of this study was to compare two random regression models (RRM) fitted by fourth ($RRM_4$) and fifth-order Legendre polynomials ($RRM_5$) with a lactation model (LM) for evaluating Holstein cattle in Brazil. Two datasets with the same animals were prepared for this study. To apply test-day RRM and LMs, 262,426 test day records and 30,228 lactation records covering 305 days were prepared, respectively. The lowest values of Akaike's information criterion, Bayesian information criterion, and estimates of the maximum of the likelihood function (-2LogL) were for $RRM_4$. Heritability for 305-day milk yield (305MY) was 0.23 ($RRM_4$), 0.24 ($RRM_5$), and 0.21 (LM). Heritability, additive genetic and permanent environmental variances of test days on days in milk was from 0.16 to 0.27, from 3.76 to 6.88 and from 11.12 to 20.21, respectively. Additive genetic correlations between test days ranged from 0.20 to 0.99. Permanent environmental correlations between test days were between 0.07 and 0.99. Standard deviations of average estimated breeding values (EBVs) for 305MY from $RRM_4$ and $RRM_5$ were from 11% to 30% higher for bulls and around 28% higher for cows than that in LM. Rank correlations between RRM EBVs and LM EBVs were between 0.86 to 0.96 for bulls and 0.80 to 0.87 for cows. Average percentage of gain in reliability of EBVs for 305-day yield increased from 4% to 17% for bulls and from 23% to 24% for cows when reliability of EBVs from RRM models was compared to those from LM model. Random regression model fitted by fourth order Legendre polynomials is recommended for genetic evaluations of Brazilian Holstein cattle because of the higher reliability in the estimation of breeding values.
Monthly test day production for 12,020 records, were collected from six of the largest specialized dairy farms located in central region of the Kingdom of Saudi Arabia. The records described lactating cows in four parities and two seasons of calving. Monthly test day records were fitted using Wood's model $At{{^b}{_e}}^{-ct}$ with multiple and additive error term. Linear and non-linear regression models were used to find the estimates of the parameters necessary to draw the lactation curves. The shape of the lactation curves of different parities showed that third lactation has the heighest peak (43.08 kg) for linear regression model and (42.08 kg) for non-linear regression model. Fourth lactation has the lowest peak (24.00kg) for linear regression model and (25.64 kg) for non-linear regression models. Cows of second and third lactations reached the peak at 58 day for both linear and non-linear regression models. Cows of first lactation were more persistent and had late peak at 68 and 67 days for both models respectively. While, third lactation cows were lower persistent and had early peak at 58 day for both models. Cows calved at winter months have higher starting values (A), higher ascending slope (b) and higher decending slope (c). Least square means of milk yield of the first four parities and for overall data were 6,653, 7,659, 7,482, 6,988 and 7,614 kg respectively. The corresponding lactation period were 358, 367, 350, 363 and 364 days respectively.
Park No-Wook;Chi Kwang-Hoon;Chung Chang-Jo F.;Kwon Byung-Doo
대한원격탐사학회:학술대회논문집
/
대한원격탐사학회 2004년도 Proceedings of ISRS 2004
/
pp.622-625
/
2004
This paper presents multi-source spatial data integration models based on probability theory for landslide hazard assessment. Four probabilistic models such as empirical likelihood ratio estimation, logistic regression, generalized additive and predictive discriminant models are proposed and applied. The models proposed here are theoretically based on statistical relationships between landslide occurrences and input spatial data sets. Those models especially have the advantage of direct use of continuous data without any information loss. A case study from the Gangneung area, Korea was carried out to quantitatively assess those four models and to discuss operational issues.
Purpose: The central aim of this study is to leverage machine learning techniques for the classification of Intrusion Detection System (IDS) data, with a specific focus on identifying the variables responsible for enhancing overall performance. Method: First, we classified 'R2L(Remote to Local)' and 'U2R (User to Root)' attacks in the NSL-KDD dataset, which are difficult to detect due to class imbalance, using seven machine learning models, including Logistic Regression (LR) and K-Nearest Neighbor (KNN). Next, we use the SHapley Additive exPlanation (SHAP) for two classification models that showed high performance, Random Forest (RF) and Light Gradient-Boosting Machine (LGBM), to check the importance of variables that affect classification for each model. Result: In the case of RF, the 'service' variable and in the case of LGBM, the 'dst_host_srv_count' variable were confirmed to be the most important variables. These pivotal variables serve as key factors capable of enhancing performance in the context of classification for each respective model. Conclusion: In conclusion, this paper successfully identifies the optimal models, RF and LGBM, for classifying 'R2L' and 'U2R' attacks, while elucidating the crucial variables associated with each selected model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.