• Title/Summary/Keyword: Additive materials

Search Result 966, Processing Time 0.03 seconds

Incorporation of Graphitic Porous Carbon for Synthesis of Composite Carbon Aerogel with Enhanced Electrochemical Performance

  • Singh, Ashish;Kohli, D.K.;Singh, Rashmi;Bhartiya, Sushmita;Singh, M.K.;Karnal, A.K.
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.204-211
    • /
    • 2021
  • We report, synthesis of high surface area composite carbon aerogel using additive based polymerization technique by incorporating graphitic porous carbon as additive. This additive was separately prepared using sol-gel polymerization of resorcinol-furfuraldehyde in iso-propyl alcohol medium at much above the routine gelation temperature to yield porous carbon (CA-IPA) having graphitic layered morphology. CA-IPA exhibited a unique combination of meso-pore dominated surface area (~ 700 m2/g) and good conductivity of ~ 300 S/m. The composite carbon aerogel (CCA) was synthesized by traditional aqueous medium based resorcinol-formaldehyde gelation with CA-IPA as additive. The presence of CA-IPA favored enhanced meso-porosity as well as contributed to improvement in bulk conductivity. Based on the surface area characteristics, CCA-8 composition having 8% additive was found to be optimum. It showed specific surface area of ~ 2056 m2/g, mesopore area of 827 m2/g and electrical conductivity of 180 S/m. The electrode formed with CCA-8 showed improved electrochemical behavior, with specific capacitance of 148 F/g & ESR < 1 Ω, making it a better choice as super capacitor for energy storage applications.

The Electrical Characteristics of Varistor. (바리스터의 전기적 특성)

  • Hong, Kyung-Jin;Jang, Dong-Hwan;Cho, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.52-56
    • /
    • 2001
  • The Breakdown electric field of ZnO semiconductor devices in voltage-current characteristics was increased by increasing of additive materials. The specimen that has not additive materials was not formed spinel structure. The critical voltage that has not spinel structure was 235[V]. When the additive materials has 0.5 and 2[mol%], the Breakdown electric field was 840 and 758[V] in each additive materials. The Breakdown electric field of varistors as a factor of voltage and current was increased by addition of oxide antimony. The varistors that has oxide antimony was linearly increased in low electric field.

  • PDF

Cold spray technology as a potential additive manufacturing (3D 프린팅 공정 관점의 저온분사 기술)

  • Kim, Hyeong-Jun;Yun, Sang-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.90-90
    • /
    • 2017
  • Cold spray (Cold gas dynamic spray, kinetic spray) is the latest spray coating process that is known as solid state deposition process. In cold spray, inert gases (typically nitrogen and helium) accelerate powder particles prior to impact onto the substrate. Accelerating particles start to deposit onto the substrate after reaching certain critical velocities depending on the coating materials and substrate. Since process gas temperatures are kept below to melting temperature of the coating materials, it is possible to spray temperature sensitive materials such as copper and titanium, nanocrystal materials, and amorphous metals without affecting the phase change and oxide formation. It is also possible to deposit thick coatings because cold spray coatings present compressive residual stresses. This ability to deposit thick coatings is suitable to repair or rebuild parts as an additive manufacturing process. In this presentation, cold spray is introduced and compared to other additive manufacturing processes such as laser and electron beam based processes. It is also presented some applications especially in the view point of additive manufacturing process.

  • PDF

Effect of ethylenediamine tetra acetic acid additive on the nucleation kinetics and growth aspects of L-arginine phosphate single crystals

  • Kumar, R.Mohan;Babu, D.Rajan;Ravi, G.;Jayavel, R.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.4
    • /
    • pp.153-156
    • /
    • 2003
  • Pure and Ethylenediaminetetraacetic acid (EDTA) doped L-arginine phosphate (LAP) single crystals were grown from the aqueous solution by temperature lowering method. The effect of EDTA additive on the solubility and metastable zone width of LAP solution has been investigated. Addition of EDTA has enhanced the metastable zone width of LAP and hence bulk crystals could be grown. The growth rate along the [100] direction increases with EDTA additive. Powder X-ray diffraction and FTIR studies reveal the absence of EDTA in the lattice of LAP, This reveals that the addition of EDTA to LAP doesn't influence the crystallinity. However, the transmittance and NLO properties significantly increase with EDTA additive and hence bulk LAP crystals are useful for laser fusion experiments.

Review of Recent Trends and Technology for Additive Manufacturing (적층제조기술 응용사례 및 최신기술동향)

  • Lee, Jaehyang;Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • Additive manufacturing is converting a digitally designed object into a tangible three dimensional solid using an additive process where materials are applied in successive layers with no or very limited material waste. It can be distinguished form traditional manufacturing which begins with a fixed amount of raw material and removes excess to arrive at the final product. Generally there are five stages to the additive manufacturing supply chain, namely materials, systems, software, application design and production. In this paper, recent market trends and technology about additive manufacturing based on supply chain are analyzed and reviewed.

Joint Properties of Inconel 718 Additive Manufactured on Ti-6Al-4V by FGM method (Ti-6Al-4V 합금 기지 위에 FGM 방식으로 적층제조 된 Inconel 718의 접합 특성 분석)

  • Park, Chan Woong;Park, Jin Woong;Jung, Ki Chae;Lee, Se-Hwan;Kim, Sung-Hoon;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.417-422
    • /
    • 2021
  • In the present work, Inconel 718 alloy is additively manufactured on the Ti-6Al-4V alloy, and a functionally graded material is built between Inconel 718 and Ti-6Al-4V alloys. The vanadium interlayer is applied to prevent the formation of detrimental intermetallic compounds between Ti-6Al-4V and Inconel 718 by direct joining. The additive manufacturing of Inconel 718 alloy is performed by changing the laser power and scan speed. The microstructures of the joint interface are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and micro X-ray diffraction. Additive manufacturing is successfully performed by changing the energy input. The micro Vickers hardness of the additive manufactured Inconel 718 dramatically increased owing to the presence of the Cr-oxide phase, which is formed by the difference in energy input.

Technology Trend of Construction Additive Manufacturing (건축 스케일 적층제조 기술동향)

  • Park, Jinsu;Kim, Kyungteak;Choi, Hanshin
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.528-538
    • /
    • 2019
  • The transition from "More-of-Less" markets (economies of scale) to "Less-of-More" markets (economies of scope) is supported by advances of disruptive manufacturing and reconfigurable-supply-chain management technologies. With the prevalence of cyber-physical manufacturing systems, additive manufacturing technology is of great impact on industry, the economy, and society. Traditionally, backbone structures are built via bottom-up manufacturing with either pre-fabricated building blocks such as bricks or with layer-by-layer concrete casting such as climbing form-work casting. In both cases, the design selection is limited by form-work design and cost. Accordingly, the tool-less building of architecture with high design freedom is attractive. In the present study, we review the technological trends of additive manufacturing for construction-scale additive manufacturing in particular. The rapid tooling of patterns or molds and rapid manufacturing of construction parts or whole structures is extensively explored through uncertainties from technology. The future regulation still has drawbacks in the adoption of additive manufacturing in construction industries.

Evaluation on Mechanical Properties of Tungsten by Sintering Additive Content (소결첨가재에 의한 텅스텐의 기계적 특성평가)

  • Lee, Sang-Pill;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.621-626
    • /
    • 2022
  • Tungsten is a high melting point metal unlike other steel materials, and it is difficult to manufacture because of its high melting temperature. In this study, pressure sintering process method was applied to manufacture the tungsten materials at low temperature. Therefore, it is necessary to densify the sintered material by using a sintering additive. Studies have been conducted on how the amount of titanium for sintering tungsten affects the mechanical properties of tungsten in this study. In order to secure the densification mechanism of tungsten powder during the sintering process, the characteristics of the sintered tungsten material according to the change of titanium content were evaluated. It was investigated the relationship between sintering parameters and mechanical properties for densification of microstructures. The sintered tungsten materials according to sintering additive content showed high sintered density (about 16.31g/cm3) and flexural strength (about 584 MPa) when the content of sintering additive was 3 wt%. However, as the content of the sintering additive increases, mechanical property of flexural strength is decreased, and the porosity is increased due to the heterogeneous sintering around titanium.

Effects of the Mixing of an Active Material and a Conductive Additive on the Electric Double Layer Capacitor Performance in Organic Electrolyte

  • Yang, Inchan;Kwon, Soon Hyung;Kim, Bum-Soo;Kim, Sang-Gil;Lee, Byung-Jun;Kim, Myung-Soo;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.132-137
    • /
    • 2015
  • The effects of the mixing of an active material and a conductive additive on the electrochemical performance of an electric double layer capacitor (EDLC) electrode were investigated. Coin-type EDLC cells with an organic electrolyte were fabricated using the electrode samples with different ball-milling times for the mixing of an active material and a conductive additive. The ball-milling time had a strong influence on the electrochemical performance of the EDLC electrode. The homogeneous mixing of the active material and the conductive additive by ball-milling was very important to obtain an efficient EDLC electrode. However, an EDLC electrode with an excessive ball-milling time displayed low electrical conductivity due to the characteristic change of a conductive additive, leading to poor electrochemical performance. The mixing of an active material and a conductive additive played a crucial role in determining the electrochemical performance of EDLC electrode. The optimal ball-milling time contributed to a homogeneous mixing of an active material and a conductive additive, leading to good electrochemical performance of the EDLC electrode.

Technology Trend of the additive Manufacturing (AM) (적층식 제조(Additive manufacturing) 기술동향)

  • Oh, Ji-Won;Na, Hyunwoong;Choi, Hanshin
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.494-507
    • /
    • 2017
  • A three-dimensional physical part can be fabricated from a three-dimensional digital model in a layer-wise manner via additive manufacturing (AM) technology, which is different from the conventional subtractive manufacturing technology. Numerous studies have been conducted to take advantage of the AM opportunities to penetrate bespoke custom product markets, functional engineering part markets, volatile low-volume markets, and spare part markets. Nevertheless, materials issues, machines issues, product issues, and qualification/certification issues still prevent the AM technology from being extensively adopted in industries. The present study briefly reviews the standard classification, technological structures, industrial applications, technological advances, and qualification/certification activities of the AM technology. The economics, productivity, quality, and reliability of the AM technology should be further improved to pass through the technology adoption lifecycle of innovation technology. The AM technology is continuously evolving through the introduction of PM materials, hybridization of AM and conventional manufacturing technologies, adoption of process diagnostics and control systems, and enhanced standardization of the whole lifecycle qualification and certification methodology.