• Title/Summary/Keyword: Additive materials

Search Result 964, Processing Time 0.031 seconds

Effect of Cow Manure and Saw Dust as the Additive Materials for Efficient Vermistabilization

  • Kim, Cbul;Son, Hee-Jeoog;Yoon, Tae-Kyung
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.6
    • /
    • pp.488-492
    • /
    • 2007
  • The influence of additive materials including saw dust and cow manure in the ripening of leather sludge for the efficient vermisabilization was studied. The ripening characteristics of the leather sludge, the growth of earthworms in the growth bed and the by-products like cast were observed according to the mixing ratio of additive materials. When the mixed leather sludge of which the additive materials contents were over 20% were ripened for 50 days, the values of ORP and alkalinity were changed to the favorable ranges for earthworms, the positive (+) and below 1,000 mg/l as $CaCO_3$, respectively. The velocity of ripening improving the characteristics of the leather sludge was faster in the sludge mixed with cow manure than saw dust. This results could also be verified from the monitoring of the states of earthworm growth using the survival rate, the increase rate of lifeweight and the hatching rate of earthworm cocoon in the their growth bed packed with the ripened sludge. The values of CEC in cast, the vermi-stabilized sludge, were increased with the mixing ratio of additive materials, but the content of heavy metals was drcreased by the dilution effect and accumulation in the earthworm body. Above results show that the leather sludge might be efficiently stabilized by earthworms through the ripening for 50 days using additive materials. Cow manure can be used as a good additive materials for leather sludge as much as saw dust, and the optimum content of additive materials in the well-ripened leather sludge was about 30%.

Effect of Additives on the Physical Properties and Surface Morphology of Copper Foil (첨가제에 의한 구리 박막의 표면형상과 물성변화)

  • Woo, Tae-Gyu;Park, Il-Song;Park, Eun-Kwang;Jung, Kwang-Hee;Lee, Hyun-Woo;Seol, Kyeong-Won
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.586-590
    • /
    • 2009
  • The effects of additives on the surface morphology and physical properties of copper electrodeposited on polyimide(PI) film were investigated here. Two kinds of additives, an activator(additive A) and a leveler(additive B),were used in this study. Electrochemical experiments, in conjunction with scanning electron microscopy(SEM), X-ray diffraction(XRD) and a four-point probe, were performed to characterize the morphology and mechanical characteristics of copper electrodeposited in the presence of the additives. The surface roughness, crystal growth orientation and resistivity could be controlled using various quantities of additive B. High resistivity and lower peel strength were observed on the surface of the copper layer electroplated onto the electrolyte with no additive B. However, a uniform surface, lower resistivity and high flexibility were obtained with a combination of 20 ppm of additive A and 100 ppm of additive B.

Enhanced Photovoltaic Performance of Perovskite Solar Cells by Copper Chloride (CuCl2) as an Additive in Single Solvent Perovskite Precursor

  • Kayesh, Md. Emrul;Matsuishi, Kiyoto;Chowdhury, Towhid H.;Kaneko, Ryuji;Noda, Takeshi;Islam, Ashraful
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.712-717
    • /
    • 2018
  • In this letter, we have introduced copper chloride ($CuCl_2$) as an additive in the $CH_3NH_3PbI_3$ precursor solution to improve the surface morphology and crystallinity of $CH_3NH_3PbI_3$ films in a single solvent system. Our optimized perovskite solar cells (PSCs) with 2.5 mol% $CuCl_2$ additive showed best power conversion efficiency (PCE) of 15.22%. The PCE of the PSCs fabricated by $CuCl_2$ (2.5 mol%) additive engineering was 56% higher than the PSC fabricated with pristine $CH_3NH_3PbI_3$.

Fabrication and Strength Properties of LPS-SiC based materials

  • Lee, Sang-Pill;Kohyama, Akira
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.25-28
    • /
    • 2006
  • This paper dealt with the LPS process for the development of high performance SiC materials, based on the detailed analysis of their microstructure and mechanical properties. The submicron SiC powder was used for the fabrication of LPS-SiC materials. A mixture of $Al_2O_3$ and $Y_2O_3$ particles was also used as a sintering additive in the LPS process. LPS-SiC materials were fabricated at different temperatures, using various additive composition ratio ($Al_2O_3/Y_2O_3$). The total amount of additive materials ($Al_2O_3+Y_2O_3$) was fixed as 10 wt%. The characterization Of LPS-SiC materials was investigated by means of SEM, XRD and three point bending test. The LPS-SiC material represented a relative density of about 98 % and a flexural strength of about 800MPa, when it was fabricated at the temperature of $1820^{\circ}C$ and the additive compositional ratio of 1.5.

  • PDF

Additive Manufacturing for Sensor Integrated Components (센서 융합형 지능형 부품 제조를 위한 적층 제조 기술 연구)

  • Jung, Im Doo;Lee, Min Sik;Woo, Young Jin;Kim, Kyung Tae;Yu, Ji-Hun
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • The convergence of artificial intelligence with smart factories or smart mechanical systems has been actively studied to maximize the efficiency and safety. Despite the high improvement of artificial neural networks, their application in the manufacturing industry has been difficult due to limitations in obtaining meaningful data from factories or mechanical systems. Accordingly, there have been active studies on manufacturing components with sensor integration allowing them to generate important data from themselves. Additive manufacturing enables the fabrication of a net shaped product with various materials including plastic, metal, or ceramic parts. With the principle of layer-by-layer adhesion of material, there has been active research to utilize this multi-step manufacturing process, such as changing the material at a certain step of adhesion or adding sensor components in the middle of the additive manufacturing process. Particularly for smart parts manufacturing, researchers have attempted to embed sensors or integrated circuit boards within a three-dimensional component during the additive manufacturing process. While most of the sensor embedding additive manufacturing was based on polymer material, there have also been studies on sensor integration within metal or ceramic materials. This study reviews the additive manufacturing technology for sensor integration into plastic, ceramic, and metal materials.

Effect of Conductive Additive Amount on Electrochemical Performances of Organic Supercapacitors (유기계 슈퍼커패시터에서 도전재의 양이 전기화학적 특성에 미치는 영향)

  • Yang, Inchan;Lee, Gihoon;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.696-703
    • /
    • 2016
  • In this study, we intensively investigated the effect of conductive additive amount on electrochemical performance of organic supercapacitors. For this purpose, we assembled coin-type organic supercapacitor cells with a variation of conductive additive(carbon black) amount; carbon aerogel and polyvinylidene fluoride were employed as active material and binder, respectively. Carbon aerogel, which is a highly mesoporous and ultralight material, was prepared via pyrolysis of resorcinol-formaldehyde gels synthesized from polycondensation of two starting materials using sodium carbonate as the base catalyst. Successful formation of carbon aerogel was well confirmed by Fourier-transform infrared spectroscopy and $N_2$ adsorption-desorption analysis. Electrochemical performances of the assembled organic supercapacitor cells were evaluated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements. Amount of conductive additive was found to strongly affect the charge transfer resistance of the supercapacitor electrodes, leading to a different optimal amount of conductive additive in organic supercapacitor electrodes depending on the applied charge-discharge rate. A high-rate charge-discharge process required a relatively high amount of conductive additive. Through this work, we came to conclude that determining the optimal amount of conductive additive in developing an efficient organic supercapacitor should include a significant consideration of supercapacitor end use, especially the rate employed for the charge-discharge process.

The Current State, Outcome and Vision of Additive Manufacturing

  • Terner, Mathieu
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.1-5
    • /
    • 2015
  • Additive Manufacturing defines the fabrication of objects by successive consolidation of materials, layer by layer, according to a three-dimensional design. The numerous technologies available today were recently standardized into seven categories based on the general method. Each technology has its own set of advantages and limitations. Though it very much depends on the field of application, major assets of additive manufacturing compared to conventional processing routes are the ability to readily offer complexity (in terms of intricate shape and customization) and significant reduction of waste. On the other hand, additive manufacturing often suffers of relatively low production rates. Anyhow, additive manufacturing technologies is being given outstanding attention. In particular, metal additive manufacturing emerges as of great significance in industries like aerospace, automotive and tooling. The trend progresses toward full production of high value finished products.

Technology Trend of Additive Manufacturing Standardization (적층제조기술의 품질 표준화 동향)

  • Choi, Hanshin;Park, Jinsu
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.420-428
    • /
    • 2020
  • Additive manufacturing technology is recognized as an optimal technology for mass-customized distributed production because it can yield products with high design freedom by applying an automated production system. However, the introduction of novel technologies to the additive manufacturing industry is generally delayed, and technology uncertainty has been pointed out as one of the main causes. This paper presents the results of the research and analysis of current standardization trends that are related to additive manufacturing by examining the hierarchical structure of the quality system along with the various industry and evaluation standards. Consequently, it was confirmed that the currently unfolding standardization does not sufficiently reflect the characteristics of additive manufacturing technology, and rather can become a barrier to entry for market participants or an element that suppresses the lateral shearing ability of additive manufacturing technology.

Effects of Additive Composition and Content on Sintered Density and Compressive Strength of Cordierite Ceramics (첨가제의 조성과 함량이 코디어라이트 세라믹스의 소결밀도와 압축강도에 미치는 영향)

  • Jang, Doo-Hee;Lim, Kwang-Young;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.230-234
    • /
    • 2007
  • Cordierite ceramics were fabricated via a reaction sintering process using ceramics-filled polysiloxane as a precursor for cordierite ceramics. In this study, the effects of the additive composition, additive content, and sintering temperature on the sintered density and compressive strength of cordierite ceramics have been investigated The sintered densities of reaction-sintered cordierite ceramics containing $TiO_2$ as an additive were insensitive to the additive composition, additive content, and sintering temperature and ranged from $1.92g/cm^3\;to\;2.06g/cm^3$. In contrast, the cordierite ceramics containing $Y_2O_3$ showed a maximal density of $2.21g/cm^3$ at 5 wt% addition and at a sintering temperature of $1400^{\circ}C$. The compressive strength of cordierite ceramics showed the same tendency with the density. Typical compressive strength of cordierite ceramics containing 5 wt% $Y_2O_3$ as a sintering additive and sintered at $1400^{\circ}C\;was\;{\sim}480MPa$.