• Title/Summary/Keyword: Additive Variance

Search Result 145, Processing Time 0.021 seconds

Effects of Maternal Factors on Day-old Chick Body Weight and Its Relationship with Weight at Six Weeks of Age in a Commercial Broiler Line

  • Jahanian, Rahman;Goudarzi, Farshad
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.302-307
    • /
    • 2010
  • The present study aimed to investigate the effects of maternal factors on body weight at hatching (day-old) and at six weeks of age in a commercial broiler line. A total of 6,765 records on body weight at day-old (BWTDO) and 115,421 records on body weight at six weeks of age (BWT6W), originated from a commercial broiler line during 14 generations, were used to estimate genetic parameters related to the effects of maternal traits on body weight of chicks immediately after hatch or six weeks thereafter. The data were analyzed using restricted maximum likelihood procedure (REML) and an animal model with DFREML software. Direct heritability ($h^{2}{_a}$), maternal heritability ($h^{2}{_m}$), and maternal environmental variance as the proportions of phenotypic variance ($c^{2}$) for body weight at day-old were estimated to be 0.050, 0.351, and 0.173, respectively. The respective estimated values for body weight at six weeks of age were 0.340, 0.022, and 0.030. The correlation coefficient between direct and maternal genetic effects for six-week-old body weight was found to be -0.335. Covariance components and genetic correlations were estimated using a bivariate analysis based on the best model determined by a univariate analysis. Between weights at hatching and at six week-old, the values of -0.07, 0.53 and 0.47 were found for the direct additive genetic variance, maternal additive genetic variance and permanent maternal environmental variance, respectively. The estimated correlation between direct additive genetic effect influencing weight at hatch and direct additive maternal effect affecting weight at six weeks of age was -0.21, whereas the correlation value of 0.15 was estimated between direct additive maternal effect influencing weight at hatch and direct additive genetic effect affecting weight at six-week-old. From the present findings, it can be concluded that the maternal additive genetic effect observed for weight at six weeks of age might be a factor transferred from genes influencing weight at hatch to weight at six-week-old.

NOISE VARIANCE ESTIMATION OF SAR IMAGE IN LOG DOMAIN

  • Chitwong S.;Minhayenud S.;Intajag S.;Cheevasuvit F.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.574-576
    • /
    • 2004
  • Since variance of noise is important parameter for a noise filter to reduce noise in image and the performance of noise filter is dependent on estimated variance. In this paper, we apply additive noise variance estimation method to estimate variance of speckle noise of synthetic aperture radar (SAR) imagery. Generally, speckle noise is in multiplicative model, logarithmic transformation is then used to transform multiplicative model into additive model. Here, speckle noise is generally modeled as Gamma distribution function with different looks. The additive noise variance estimation is processed in log domain. The synthesis image and real image of SAR are implemented to test and confirm results and show that more accurate estimation can be achieved.

  • PDF

Estimation of Additive and Dominance Genetic Variances in Line Breeding Swine

  • Ishida, T.;Kuroki, T.;Harada, H.;Fukuhara, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • Additive and dominance genetic variances were estimated for purebred Landrace selected with line breeding from 1989 to 1995 at Miyazaki Livestock Experiment Station, Kawaminami Branch. Ten body measurements, two reproductive traits and fifteen carcass traits were analyzed with single-trait mixed model analysis. The estimates of narrow-sense heritabilities by additive model were in the range of 0.07 to 0.46 for body measurements, 0.05 to 0.14 for reproductive traits, and 0.05 to 0.68 for carcass traits. The additive model tended to slightly overestimate the narrow-sense heritabilities as compared to the additive and dominance model. The proportion of the dominance variance to total genetic variance ranged from 0.11 to 0.91 for body measurements, 0.00 to 0.65 for reproductive traits, and 0.00 to 0.86 for carcass traits. Large differences among traits were found in the ratio of dominance to total genetic variance. These results suggested that dominance effect would affect the expression of all ten body measurements, one reproductive trait, and nine carcass traits. It is justified to consider the dominance effects in genetic evaluation of the selected lines for those traits.

Harmonics-based Spectral Subtraction and Feature Vector Normalization for Robust Speech Recognition

  • Beh, Joung-Hoon;Lee, Heung-Kyu;Kwon, Oh-Il;Ko, Han-Seok
    • Speech Sciences
    • /
    • v.11 no.1
    • /
    • pp.7-20
    • /
    • 2004
  • In this paper, we propose a two-step noise compensation algorithm in feature extraction for achieving robust speech recognition. The proposed method frees us from requiring a priori information on noisy environments and is simple to implement. First, in frequency domain, the Harmonics-based Spectral Subtraction (HSS) is applied so that it reduces the additive background noise and makes the shape of harmonics in speech spectrum more pronounced. We then apply a judiciously weighted variance Feature Vector Normalization (FVN) to compensate for both the channel distortion and additive noise. The weighted variance FVN compensates for the variance mismatch in both the speech and the non-speech regions respectively. Representative performance evaluation using Aurora 2 database shows that the proposed method yields 27.18% relative improvement in accuracy under a multi-noise training task and 57.94% relative improvement under a clean training task.

  • PDF

Estimation of Crossbreeding Parameters for Serum Lysozyme Level in Broiler

  • Nath, M.;Singh, B.P.;Saxena, V.K.;Dev Roy, A.K.;Singh, R.V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.166-171
    • /
    • 2002
  • The main objective of the present study is to estimate the crossbreeding parameters in respect to serum lysozyme level in broilers. The experiment involved a complete $4{\times}4$ diallel design using four synthetic broiler lines namely Coloured Synthetic Male Line (CSML), White Synthetic Male Line (WSML), Coloured Synthetic Female Line (CSFL) and Naked Neck Line (NNL). The lyophilised Micrococcus lysodeikticus suspension was used to detect the lysozyme level in the serum of birds. The data were analysed by least-squares method to find the effects of genetic and non-genetic factors using appropriate model. The crossbreeding parameters for this trait were estimated by complete diallel model assuming the effect of each synthetic line as fixed. The results indicated that additive and non-additive genetic variation attributed to minor genes at many loci is important for the genetic control of serum lysozyme level in chickens. Total non-additive components of variance also showed significant amount of heterosis in crossbred progenies, and therefore exploitation of non-additive component of variance is possible for improvement in serum lysozyme level in broilers. The overall results suggested that for commercial broiler production system, the selection for specialised line on the basis of serum lysozyme level and subsequent crossing of parent lines could enhance the immunocompetence status in relation to serum lysozyme level in crossbred chickens.

An Analytical Approach to Sire-by-Year Interactions in Direct and Maternal Genetic Evaluation

  • Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.4
    • /
    • pp.441-444
    • /
    • 1998
  • The negative direct-maternal genetic correlation $(r_{dm})$ for weaning weight is inflated when data are analyzed with model ignoring sire-by-year interactions (SY). An analytical study investigating the consequences of ignoring SY was undertaken. The inflation of negative correlation could be due to a functional relationship of design matrices for additive direct and maternal genetic effects to that for sire effects within which SY effects were nested. It was proven that the maternal genetic variance was inflated by the amount of reduction for sire variance; the direct genetic variance was inflated by four times the change for maternal genetic variance; and the direct-maternal genetic covariance was deflated by twice the change for maternal genetic variance. The findings were agreed to the results in previous studies.

Influence of Inbreeding Depression on Genetic (Co)Variance and Sire-by-Year Interaction Variance Estimates for Weaning Weight Direct-Maternal Genetic Evaluation

  • Lee, C.;Pollak, E.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.5
    • /
    • pp.510-513
    • /
    • 1997
  • This study examined the effects of ignoring inbreeding depression on (co)variance components for weaning weight through the use of Monte Carlo simulation. Weaning weight is of particular interest as a trait for which additive direct and maternal genetic components exist and there then is the potential for a direct-maternal genetic covariance. Ignoring inbreeding depression in the analytical model (.8 kg reduction of phenotypic value per 1% inbreeding) led to biased estimates of all genetic (co) variance components, all estimates being larger than the true values of the parameters. In particular, a negative bias in the direct-maternal genetic covariance was observed in analyses that ignored inbreeding depression. A small spurious sire-by-year interaction variance was also observed.

Genomic partitioning of growth traits using a high-density single nucleotide polymorphism array in Hanwoo (Korean cattle)

  • Park, Mi Na;Seo, Dongwon;Chung, Ki-Yong;Lee, Soo-Hyun;Chung, Yoon-Ji;Lee, Hyo-Jun;Lee, Jun-Heon;Park, Byoungho;Choi, Tae-Jeong;Lee, Seung-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1558-1565
    • /
    • 2020
  • Objective: The objective of this study was to characterize the number of loci affecting growth traits and the distribution of single nucleotide polymorphism (SNP) effects on growth traits, and to understand the genetic architecture for growth traits in Hanwoo (Korean cattle) using genome-wide association study (GWAS), genomic partitioning, and hierarchical Bayesian mixture models. Methods: GWAS: A single-marker regression-based mixed model was used to test the association between SNPs and causal variants. A genotype relationship matrix was fitted as a random effect in this linear mixed model to correct the genetic structure of a sire family. Genomic restricted maximum likelihood and BayesR: A priori information included setting the fixed additive genetic variance to a pre-specified value; the first mixture component was set to zero, the second to 0.0001×σ2g, the third 0.001×σ2g, and the fourth to 0.01×σ2g. BayesR fixed a priori information was not more than 1% of the genetic variance for each of the SNPs affecting the mixed distribution. Results: The GWAS revealed common genomic regions of 2 Mb on bovine chromosome 14 (BTA14) and 3 had a moderate effect that may contain causal variants for body weight at 6, 12, 18, and 24 months. This genomic region explained approximately 10% of the variance against total additive genetic variance and body weight heritability at 12, 18, and 24 months. BayesR identified the exact genomic region containing causal SNPs on BTA14, 3, and 22. However, the genetic variance explained by each chromosome or SNP was estimated to be very small compared to the total additive genetic variance. Causal SNPs for growth trait on BTA14 explained only 0.04% to 0.5% of the genetic variance Conclusion: Segregating mutations have a moderate effect on BTA14, 3, and 19; many other loci with small effects on growth traits at different ages were also identified.

A Study on Improved Denoising Algorithm for Edge Preservation in AWGN Environments (AWGN환경에서 에지보호를 위한 개선된 잡음제거 알고리즘에 관한 연구)

  • Yinyu, Gao;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1773-1778
    • /
    • 2012
  • Nowadays, the high quality of image is required with the demand for digital image processing devices is rapidly increasing. But image always damaged by many kinds of noises and it is necessary to remove noise and the denoising becomes one of the most important fields. In many cases image is corrupted by AWGN(additive white Gaussian noise). In this paper, we proposed an improved denoising algorithm with edge preservation. The proposed algorithm averages values processed by spatial weighted filter and self adaptive weighted filter. Then we add the value which is computed by the equation considering variance of mask and the estimated noise variance. Through the experience, the proposed filter performs well on noise suppression and edge preservation properties and improves the image visual quality.

An Additive Quantitative Randomized Response Model by Cluster Sampling

  • Lee, Gi-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.3
    • /
    • pp.447-456
    • /
    • 2012
  • For a sensitive survey in which the population is comprised of several clusters with a quantitative attribute, we present an additive quantitative randomized response model by cluster sampling that adapts a two-stage cluster sampling instead of a simple random sample based on Himmelfarb-Edgell's additive quantitative attribute model and Gjestvang-Singh's one. We also derive optimum values for the number of 1st stage clusters and the optimum values of observation units in a 2nd stage cluster under the condition of minimizing the variance given constant cost. We can see that Himmelfarb-Edgell's model is more efficient than Gjestvang-Singh's model under the condition of cluster sampling.