• Title/Summary/Keyword: Additional steering angle

Search Result 15, Processing Time 0.027 seconds

Integrated Dynamics Control System for SUV with Front Brake Force and Front Steering Angle (전륜 제동력 및 전륜 조향각을 이용한 SUV 차량의 통합운동제어시스템 개발)

  • Song, Jeonghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.22-27
    • /
    • 2022
  • An integrated front steering system and front brake system (FSFB) is developed to improve the stability and controllability of an SUV. The FSFB simultaneously controls the additional steering angle and front brake pressure. An active front steering system (AFS) and an active front brake system (AFB) are designed for comparison. The results show that the FSFB enhances the lateral stability and controllability regardless of road and running conditions compared to the AFS and AFB. As a result, the yaw rate of the SUV tracks the reference yaw rate, and the side slip angle decreases. In addition, brake pressure control is more effective than steering angle control in improving the stability and steerability of the SUV on a slippery road. However, this deteriorates comfort on dry or wet asphalt.

A Study on the Control Algorithm for a Ball Screw Type of Motor Driven Power Steering System (Ball screw형 전동식 동력 조향 장치의 제어에 관한 연구)

  • 윤석찬;왕영용;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.124-134
    • /
    • 2000
  • The power wteering system for automobiles is becoming core popular for supporting steering efforts of the drivers, especially for a parking lot maneuver. Though hydraulic power steering has been widely used for a long time, the efficiency of that is not high enough. The motor driven power steering system can solve the problems associated with the hydraulic power steering system. In this study, dynamic model and control algorithm of the ball screw type of MDPS systenem have been derived and analysed by using the method of discrete modeling technology. To improve steering feel and power steering characteristics, the additional scheme is proposed to the conventional power boosting control algorithm. Through simulations, control gain effects to the steering angle gain in the frequency domain were verified. The steering returnability and steering torque phase lag in on-center handing test were performed also.

  • PDF

A Study on Lateral Stability Enhancement of 4WS Vehicle with Active Front Wheel Steer System (능동전륜조향장치를 채택한 사륜조향차량의 횡방향 안정성 강화에 대한 연구)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.15-20
    • /
    • 2012
  • This study is to propose and develop an integrated dynamics control system to improve and enhance the lateral stability and handling performance. To achieve this target, we integrate an AFS and a 4WS systems with a fuzzy logic controller. The IDCS determines active additional steering angle of front wheel and controls the steering angle of rear wheel. The results show that the IDCS improves the lateral stability and controllability on dry asphalt and snow paved road when double lane change and step steering inputs are applied. Yaw rate of the IDCS vehicle tracks reference yaw rate very well and body slip angle is reduced about by 50%. Response time of the IDCS vehicle is also decreased.

Development of New Numerical Model and Controller of AFS System (AFS 시스템의 새로운 수학적 모델 및 제어기 개발)

  • Song, Jeonghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.59-67
    • /
    • 2014
  • A numerical model and a controller of Active Front wheel Steer (AFS) system are designed in this study. The AFS model consists of four sub models, and the AFS controller uses sliding mode control and PID control methods. To test this model and controller an Integrated Dynamics Control with Steering (IDCS) system is also designed. The IDCS system integrates an AFS system and an ARS (Active Rear wheel Steering) system. The AFS controller and IDCS controller are compared under several driving and road conditions. An 8 degree of freedom vehicle model is also employed to test the controllers. The results show that the model of AFS system shows good kinematic steering assistance function. Steering ratio varies depends on vehicle velocity between 12 and 24. Kinematic stabilization function also shows good performance because yaw rate of AFS vehicle tracks the reference yaw rate. IDCS shows improved responses compared to AFS because body side slip angle is also reduced. This result also proves that AFS system shows satisfactory result when it is integrated with another chassis system. On a split-m road, two controllers forced the vehicle to proceed straight ahead.

Drowsy Driving Detection Algorithm Using a Steering Angle Sensor And State of the Vehicle (조향각센서와 차량상태를 이용한 졸음운전 판단 알고리즘)

  • Moon, Byoung-Joon;Yeon, Kyu-Bong;Lee, Sun-Geol;Hong, Seung-Pyo;Nam, Sang-Yep;Kim, Dong-Han
    • 전자공학회논문지 IE
    • /
    • v.49 no.2
    • /
    • pp.30-39
    • /
    • 2012
  • An effective drowsy driver detection system is needed, because the probability of accident is high for drowsy driving and its severity is high at the time of accident. However, the drowsy driver detection system that uses bio-signals or vision is difficult to be utilized due to high cost. Thus, this paper proposes a drowsy driver detection algorithm by using steering angle sensor, which is attached to the most of vehicles at no additional cost, and vehicle information such as brake switch, throttle position signal, and vehicle speed. The proposed algorithm is based on jerk criterion, which is one of drowsy driver's steering patterns. In this paper, threshold value of each variable is presented and the proposed algorithm is evaluated by using acquired vehicle data from hardware in the loop simulation (HILS) through CAN communication and MATLAB program.

Development of an Integrated Control System between Active Front Wheel System and Active Rear Brake System (능동전륜조향장치 및 능동후륜제동장치의 통합제어기 개발)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.17-23
    • /
    • 2012
  • An integrated dynamic control (IDCF) with an active front steering system and an active rear braking system is proposed and developed in this study. A fuzzy logic controller is applied to calculate the desired additional steering angle and desired slip of the rear inner wheel. To validate IDCF system, an eight degree of freedom, nonlinear vehicle model and a sliding mode wheel slip controller are also designed. Various road conditions are used to test the performance. The results show that the yaw rate of IDCF vehicle followed the reference yaw rate and reduced the body slip angle, compared with uncontrolled vehicle. Thus, the IDCF vehicle had enhanced lateral stability and controllability.

Safe Adaptive Headlight Controller with Symmetric Angle Sensor Compensator Using Steering-swivel Angle Lookup Table (조향각-회전각 룩업테이블을 이용한 대칭형 각도센서 보상기를 가지는 안전한 적응형 전조등 제어기의 설계)

  • Youn, Jiae;An, Joonghyun;Yin, Meng Di;Cho, Jeonghun;Park, Daejin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.112-121
    • /
    • 2016
  • AFLS (Adaptive front lighting system) is being applied to improve safety in driving automotive at night. Safe embedded system design for controlling head-lamps is required to improve noise robust ECU hardware and software simultaneously by considering safety requirement of hardware-dependent software under severe environmental noise. In this paper, we propose an adaptive headlight controller with a newly-designed symmetric angle sensor compensator, especially based on the proposed steering-swivel angle lookup table to determine whether the current controlling target is safe. The proposed system includes an additional backup hardware to compare the system status and provides safe swivel-angle management using a controlling algorithm based on the pre-defined lookup table (LUT), which is a symmetric mapping relationship between the requested steering angle and expected swivel angle target. The implemented system model shows that the proposed architecture effectively detects abnormal situations and restores safe status of controlling the light-angle in AFLS operations under severe noisy environment.

4 and 7 Element GPS Anti-jamming Algorithm Performance Analysis Considering the Relative Arrangement of the Multiple Jammers (비행체의 자세와 GPS 재머의 상대적인 배치상태를 고려한 4소자 및 7소자 항재밍장치에 대한 성능분석)

  • Choi, Jae-Gun
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.218-225
    • /
    • 2016
  • Null steering and beam steering are known well as anti-jamming methods in GPS anti-jamming system. Null steering gets a noise attenuation effect for the direction of jamming and beam steering earns additional gain synthesis for the direction of satellite signals. According to the research in the article for signal processing, it expresses that the N array antenna is effective for N-1 number of jamming signal by math public interest, however, the two algorithms analysis is not unknown for the operating condition of the realistic vehicle. In this paper, we modeled anti-jamming system using 4 and 7 array antenna and showed the two algorithms performance (PM, LCMV) when considering the number of antenna array, jammers and vehicle position (horizontal, vertical). In result, we showed that the case of vertical position of the vehicle which has large tilt angle for the relative position of satellites and jammers, has about 10 dB gain more in comparison with one of vertical position in spite of same JSR condition.

Precise Tracking control of Automated Guided Vehicle System (무인반송 차량시스템의 정밀 추적제어)

  • Shin, Doo-Jin;Huh, Uk-Youl
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.313-317
    • /
    • 2001
  • This paper proposed a fuzzy logic cross coupled controller which can enhance the path tracking performance of optically guided AGV(Automated Guided Vehicle). The AGV follows the guide path, it cannot be avoid the deviation from the path due to the inevitable error and the deviation must be corrected. Optically guided AGV used in industrial area is controlled by On-Off controller generally, the experimental AGV has three optical sensors in front body. In this structure, we could not know the leaving distance accurately and steering angle from the guided line, so AGV could not be controlled properly with conventional controller in the case of increasing or decreasing velocity. If we mount additional sensors the AGV, we could know the leaving distance and steering angle from the guided line and proper error compensating methode can be applied. But because cost of sensors are high, the cost of total system is increasing. So, in this paper, to improve the tracking performance of AGV which has the minimum number of sensors and fuzzy logic cross coupled controller is proposed. Some simulations and experimental results are presented to illustrate the performance of the proposed controller.

  • PDF

Modeling and Analysis of a Novel Two-Axis Rotary Electromagnetic Actuator for Fast Steering Mirror

  • Long, Yongjun;Wang, Chunlei;Dai, Xin;Wei, Xiaohui;Wang, Shigang
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.130-139
    • /
    • 2014
  • This paper focuses on the modeling and analysis a novel two-axis rotary normal-stress electromagnetic actuator with compact structure for fast steering mirror (FSM). The actuator has high force density similar to a solenoid, but its torque output is nearly a linear function of both its driving current and rotation angle, showing that the actuator is ideal for FSM. In addition, the actuator is designed with a new cross topology armature and no additional axial force is generated when the actuator works. With flux leakage being involved in the actuator modeling properly, an accurate analytical model of the actuator, which shows the actuator's linear characteristics, is obtained via the commonly used equivalent magnetic circuit method. Finally, numerical simulation is presented to validate the analytical actuator model. It is shown that the analytical results are in a good agreement with the simulation results.