• 제목/요약/키워드: Additional Learning

검색결과 651건 처리시간 0.022초

Keyed learning: An adversarial learning framework-formalization, challenges, and anomaly detection applications

  • Bergadano, Francesco
    • ETRI Journal
    • /
    • 제41권5호
    • /
    • pp.608-618
    • /
    • 2019
  • We propose a general framework for keyed learning, where a secret key is used as an additional input of an adversarial learning system. We also define models and formal challenges for an adversary who knows the learning algorithm and its input data but has no access to the key value. This adversarial learning framework is subsequently applied to a more specific context of anomaly detection, where the secret key finds additional practical uses and guides the entire learning and alarm-generating procedure.

추가 학습이 빈번히 필요한 비포장도로에서 주행로 탐색에 적합한 GLSL 기반 ALNN Algorithm (GLSL based Additional Learning Nearest Neighbor Algorithm suitable for Locating Unpaved Road)

  • 구본우;김준겸;이은주
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.29-36
    • /
    • 2019
  • 국방 분야에서 무인 차량의 주행로는 포장 도로 뿐만 아니라, 자주 다양한 변화를 갖는 야지의 비포장 도로 등이 포함된다. 이 무인 차량은 주로 험지나 오지에서 감시 및 정찰, 진지 방어 등을 수행하므로 자율 주행을 위해서 예측하지 못했던 다양한 주행로와 환경을 수시로 접하게 되며, 이에 따라 추가 학습이 필요하다. 본 논문에서는 'Forgetting' 문제를 피하면서 거리 비교와 Class 비교를 통해 빠르게 추가 학습이 가능하도록 Approximate Nearest Neighbor를 수정한 GPU 기반 Additional Learning Nearest Neighbor(ALNN) 알고리즘을 제안한다. 또 ALNN 알고리즘은 학습 데이터가 누적될수록 연산 속도가 저하되는 문제가 있고, 본 연구에서는 OpenGL Shading Language 기반의 GPU 병렬 처리를 사용하여 이를 해결하였다. ALNN 알고리즘은 기존의 학습 데이터에 영향을 주지 않으면서 빠르게 추가 학습이 가능하여, 빈번히 실시간으로 재학습이 필요한 국방 등의 분야에 활용될 수 있다.

Additional Learning Framework for Multipurpose Image Recognition

  • Itani, Michiaki;Iyatomi, Hitoshi;Hagiwara, Masafumi
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.480-483
    • /
    • 2003
  • We propose a new framework that aims at multi-purpose image recognition, a difficult task for the conventional rule-based systems. This framework is farmed based on the idea of computer-based learning algorithm. In this research, we introduce the new functions of an additional learning and a knowledge reconstruction on the Fuzzy Inference Neural Network (FINN) (1) to enable the system to accommodate new objects and enhance the accuracy as necessary. We examine the capability of the proposed framework using two examples. The first one is the capital letter recognition task from UCI machine learning repository to estimate the effectiveness of the framework itself, Even though the whole training data was not given in advance, the proposed framework operated with a small loss of accuracy by introducing functions of the additional learning and the knowledge reconstruction. The other is the scenery image recognition. We confirmed that the proposed framework could recognize images with high accuracy and accommodate new object recursively.

  • PDF

딥러닝의 다수 입력 이미지 학습 및 추론 효율 향상을 위해 추가적인 처리 프로세스 연구 (A Study on Additional Processing Processes for Learning Multiple-input Images and Improving Inference Efficiency in Deep Learning)

  • 최동규;김민영;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.44-46
    • /
    • 2021
  • 실생활에는 많은 카메라가 활용되고 있으며 단순한 추억을 위한 사진 촬영을 넘어서 문제 상황을 확인하기 위하여 감시, 방범을 위하여 많이 사용되고 있다. 이러한 감시와 방범은 일반적인 형태로 단순한 저장으로만 사용되고 있으며, 다수의 카메라를 활용하는 시스템에서는 추가 기능을 활용하는 것은 하드웨어의 추가적인 사양을 요구하게 된다. 본 논문에서는 일반적인 이미지 처리에서 벗어난 객체 감지 시스템을 수행하는 하나의 하드웨어 또는 서버에서 입력된 여러 개의 이미지 입력 처리하기 위해 이미지 입력 방법과 객체 감지 이후 처리 프로세스를 추가한다. 방법의 수행은 딥러닝을 수행하는 하드웨어의 학습과 추론에 모두 활용해 보며 개선된 이미지 처리 프로세스를 수행할 수 있도록 한다.

  • PDF

A Study on Design and Implementation of the Ubiquitous Computing Environment-based Dynamic Smart On/Off-line Learner Tracking System

  • Lim, Hyung-Min;Jang, Kun-Won;Kim, Byung-Gi
    • Journal of Information Processing Systems
    • /
    • 제6권4호
    • /
    • pp.609-620
    • /
    • 2010
  • In order to provide a tailored education for learners within the ubiquitous environment, it is critical to undertake an analysis of the learning activities of learners. For this purpose, SCORM (Sharable Contents Object Reference Model), IMS LD (Instructional Management System Learning Design) and other standards provide learning design support functions, such as, progress checks. However, in order to apply these types of standards, contents packaging is required, and due to the complicated standard dimensions, the facilitation level is lower than the work volume when developing the contents and this requires additional work when revision becomes necessary. In addition, since the learning results are managed by the server there is the problem of the OS being unable to save data when the network is cut off. In this study, a system is realized to manage the actions of learners through the event interception of a web-browser by using event hooking. Through this technique, all HTMLbased contents can be facilitated again without additional work and saving and analysis of learning results are available to improve the problems following the application of standards. Furthermore, the ubiquitous learning environment can be supported by tracking down learning results when the network is cut off.

오픈소스 LMS를 이용한 효율적 e-Learning 환경 구축과 학습결과 분석에 관한 연구 (Development and Learning Outcome Analysis of an Efficient e-Learning Environment using Open Source LMS)

  • 허원;양용석;박기원;부티투
    • 한국디지털정책학회:학술대회논문집
    • /
    • 한국디지털정책학회 2005년도 춘계학술대회
    • /
    • pp.559-570
    • /
    • 2005
  • 본 논문은 오픈소스를 활용하여 e-Learning 에 필수적인 LMS를 개발 제시 하였다. 이는 MTT 에서 시작된 dotLRN 오픈소스 프로젝트를 한글화 하고, 인터넷 교육 표준안인 SCORM을 수용할 수 있는 모듈을 추가 개발하여 학습자의 학습 상황을 관리할 수 있는 기능을 부여한 것이다. 본 시스템은 공주 대학교 가상 대학의 LMS로서 1년 동안 안정적으로 서비스를 제공하였으며, 이를 기반으로 개발 시스템의 기능과 특정을 알아보고, 특히 학습소요시간을 활용한 학습결과 분석에 대하여 고찰 하고자한다.

  • PDF

ATM 망에서 축약 분산 기억 장치를 사용한 호 수락 제어 (Call admission control for ATM networks using a sparse distributed memory)

  • 권희용;송승준;최재우;황희영
    • 전자공학회논문지S
    • /
    • 제35S권3호
    • /
    • pp.1-8
    • /
    • 1998
  • In this paper, we propose a Neural Call Admission Control (CAC) method using a Sparse Distributed Memory(SDM). CAC is a key technology of TM network traffic control. It should be adaptable to the rapid and various changes of the ATM network environment. conventional approach to the ATM CAC requires network analysis in all cases. So, the optimal implementation is said to be very difficult. Therefore, neural approach have recently been employed. However, it does not mett the adaptability requirements. because it requires additional learning data tables and learning phase during CAC operation. We have proposed a neural network CAC method based on SDM that is more actural than conventioal approach to apply it to CAC. We compared it with previous neural network CAC method. It provides CAC with good adaptability to manage changes. Experimenatal results show that it has rapid adaptability and stability without additional learning table or learning phase.

  • PDF

Factors Affecting Student Performance in E-Learning: A Case Study of Higher Educational Institutions in Indonesia

  • MARLINA, Evi;TJAHJADI, Bambang;NINGSIH, Sri
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권4호
    • /
    • pp.993-1001
    • /
    • 2021
  • This study aims to determine the factors influencing student performance using the teaching and learning process through e-learning based on the unified theory of acceptance and use technology (UTAUT). This study also sets out to propose additional variables to expand the UTAUT model to be more suitable to use in higher education. This research conducted a literature review, expert interviews, and a self-administered survey involving 200 students at tertiary institutions in Riau province, Indonesia. The questionnaire data were analyzed using SmartPLS 2. This study shows that UTAUT constructs, namely, social influence, facility conditions, and effort expectancy have a significant influence on student behavior and performance, while the performance expectancy variable shows no significant effect. The additional variables, including lecturer characteristics, external motivation, and organizational structure, directly affect student performance. However, concerning student behavior, motivation and environment are the only variables with a significant effect. The results of this study suggest the behavior deteminant such as lecturer characteristics, motivation and environment, and organizational structure improve student performance. This study investigates factors affecting the performance of university students through the learning employing e-learning by developing the UTAUT constructs to include the lecturer characteristics, motivation and environment, and organizational structure in improving student performance.

한국어 반어 표현 탐지기 (Korean Ironic Expression Detector)

  • 방승주;박요한;김지은;이공주
    • 정보처리학회 논문지
    • /
    • 제13권3호
    • /
    • pp.148-155
    • /
    • 2024
  • 자연어 처리 분야에서 반어 및 비꼼 탐지의 중요성이 커지고 있음에도 불구하고, 한국어에 관한 연구는 다른 언어들에 비해 상대적으로 많이 부족한 편이다. 본 연구는 한국어 텍스트에서의 반어 탐지를 위해 다양한 모델을 실험하는 것을 목적으로 한다. 본 연구는 BERT기반 모델인 KoBERT와 ChatGPT를 사용하여 반어 탐지 실험을 수행하였다. KoBERT의 경우, 감성 데이터를 추가 학습하는 두 가지 방법(전이 학습, 멀티태스크 학습)을 적용하였다. 또한 ChatGPT의 경우, Few-Shot Learning기법을 적용하여 프롬프트에 입력되는 예시 문장의 개수를 증가시켜 실험하였다. 실험을 수행한 결과, 감성 데이터를 추가학습한 전이 학습 모델과 멀티태스크 학습 모델이 감성 데이터를 추가 학습하지 않은 기본 모델보다 우수한 성능을 보였다. 한편, ChatGPT는 KoBERT에 비해 현저히 낮은 성능을 나타내었으며, 입력 예시 문장의 개수를 증가시켜도 뚜렷한 성능 향상이 이루어지지 않았다. 종합적으로, 본 연구는 KoBERT를 기반으로 한 모델이 ChatGPT보다 반어 탐지에 더 적합하다는 결론을 도출했으며, 감성 데이터의 추가학습이 반어 탐지 성능 향상에 기여할 수 있는 가능성을 제시하였다.

Assessment with Using the Handheld Graphing Technology in Mathematics Classroom

  • Choi, Jong-Sool;Lee, Ji-Sung;Lee, Mi-Kyeng;Kang, Seon-Young;Jung, Doo-Young
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제7권3호
    • /
    • pp.151-161
    • /
    • 2003
  • In this paper, we discuss how to assess students' understanding of concepts during class, after class and in regular exams in the mathematics classes using the handheld graphing technology. We show some methods of assessment that are compatible with the class using the handheld graphing technology. These methods are adjustable to students' learning during class, homework after class or in regular exams. As a feedback of these methods we give students additional opportunity to understand concepts by giving additional concept provoking problems or giving additional help if necessary.

  • PDF