• Title/Summary/Keyword: Adaptive turn ratio

Search Result 6, Processing Time 0.021 seconds

A High Efficiency LLC Resonant Converter with Wide Operation Range using Adaptive Turn Ratio Transformer for a Li-ion Battery (변압기의 가변 턴비 기법을 통해 넓은 전압범위를 만족하는 리튬이온 배터리용 고효율 LLC 공진형 컨버터)

  • Han, Hyeong-Gu;Choi, Yeong-Jun;Kim, Rae-Young;Kim, Juyong;Cho, Jintae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.305-311
    • /
    • 2017
  • In this paper, the LLC resonant converter battery charger, using adaptive turn ratio scheme, is proposed to achieve high efficiency and wide range output voltage. The LLC converter high frequency transformer has an adaptively changed turn ratio by the auxiliary control circuitry. As a result, the optimal converter design with a large magnetizing inductance is easily achieved to minimize the conduction and the turn-off losses while providing widely regulated voltage gain capability to properly charge the Li-ion battery. The proposed converter operational principle and the optimal design considerations are illustrated in detail. Finally, several simulation results verify the proposed LLC resonant converter's effectiveness.

A High Efficiency LLC Resonant Converter-based Li-ion Battery Charger with Adaptive Turn Ratio Variable Scheme

  • Choi, Yeong-Jun;Han, Hyeong-Gu;Choi, See-Young;Kim, Sang-Il;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.124-132
    • /
    • 2018
  • This paper proposes an LLC resonant converter based battery charger which utilizes an adaptive turn ratio scheme to achieve a wide output voltage range and high efficiency. The high frequency transformer of the LLC converter of the proposed strategy has an adaptively changed turn ratio through the auxiliary control circuit. As a result, an optimized converter design with high magnetizing inductance is possible, while minimizing conduction and turn-off losses and providing a regulated voltage gain to properly charge the lithium ion battery. For a step-by-step explanation, operational principle and optimal design considerations of the proposed converter are illustrated in detail. Finally, the effectiveness of the proposed strategy is verified through various experimental results and efficiency analysis based on prototype 300W Li-ion battery charger and battery pack.

New Dynamic Adaptive Threshold Destage Algorithms for Cached RAID 5 (RAID 5의 성능향상을 위한 쓰기 캐쉬의 동적 적응 반출기법)

  • Yie, Hyeok;Choi, Sang-Bang
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.47-50
    • /
    • 2000
  • In this paper, we propose a new destage algorithms, called the Dynamic Adaptive Threshold which determines turn-on and turn-off thresholds dynamically depending on the current write cache occupancy level and the differential rate of the host write requests. For performance evaluation, the proposed algorithm is compared with the wellknown High-Low Water Mark (HLWM) algorithm. Performance tests are fulfilled with our cached RAID 5 simulator. The simulation results show that the proposed algorithm outperforms the HLWM algorithm in terms of response time of host reads and write cache hit ratio under various workloads.

  • PDF

Eigenspace-Based Adaptive Array Robust to Steering Errors By Effective Interference Subspace Estimation (효과적인 간섭 부공간 추정을 통한 조향에러에 강인한 고유공간 기반 적응 어레이)

  • Choi, Yang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.269-277
    • /
    • 2012
  • When there are mismatches between the beamforming steering vector and the array response vector for the desired signal, the performance can be severely degraded as the adaptive array attempts to suppress the desired signal as well as interferences. In this paper, an robust method is proposed for the adaptive array in the presence of both direction errors and random errors in the steering vector. The proposed method first finds a signal-plus-interference subspace (SIS) from the correlation matrix, which in turn is exploited to extract an interference subspace based on the structure of a uniform linear array (ULA), the effect of the desired signal direction vector being reduced as much as possible. Then, the weight vector is attained to be orthogonal to the interference subspace. Simulation shows that the proposed method, in terms of signal-to-interference plus noise ratio (SINR), outperforms existing ones such as the doubly constrained robust Capon beamformer (DCRCB).

Fast Motion Estimation Algorithms Through Adaptive Application of the Hadamard Transform (하다마드 변환의 적응적 적용을 이용한 고속 움직임 예측 알고리즘)

  • Lee, Hyuk;Kim, Jong-Ho;Jin, Soon-Jong;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.712-719
    • /
    • 2007
  • In this paper, we propose a new, effective, fast motion estimation algorithms using $4{\times}4$ pixels Hadamard transform. The Hadamard transform has the advantage of simplicity because it uses only addition and subtraction. Motion estimation is composed of three stages. First, it should be decided whether to terminate the search early and use a previous motion vector with DC(Direct Current) coefficients. Then the adaptive matching scan order for motion estimation should be determined according to the image complexity using AC(Alternating Current) coefficients. Experimentally, we adapted this algorithms to MVFAST and PMVFAST algorithms, and the proposed algorithms turn out to be very efficient in terms of computational speed while remaining almost the same in terms of PSNR(Peak Signal-to-Noise Ratio) compared to MVFAST and PMVFAST algorithms.

Dynamic Adjustment of Ad hoc Traffic Indication Map(ATIM) window to save Power in IEEE 802.11 DCF

  • Nam, Jae-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.343-347
    • /
    • 2008
  • Wakeup schemes that turn off sensors' radio when communication is not necessary have great potential in energy saving. At the start of each beacon interval in the IEEE 802.11 power saving mode specified for DCF, each node periodically wakes up for duration called the ATIM Window. However, in the power saving mechanism specified in IEEE 802.11, all nodes use the same ATIM window size. Since the ATIM window size critically affects throughput and energy consumption, a fixed ATIM window does not perform well in all situations. This paper proposes an adaptive mechanism to dynamically choose an ATIM window size according to network condition. Simulation results show that the proposed scheme outperforms the IEEE 802.11 power saving mechanism in terms of the amount of power consumed and the packet delivery ratio.