• Title/Summary/Keyword: Adaptive segmentation

Search Result 232, Processing Time 0.021 seconds

An Adaptive Contrast Enhancement Method using Dynamic Range Segmentation for Brightness Preservation (밝기 보존을 위한 동적 영역 분할을 이용한 적응형 명암비 향상기법)

  • Park, Gyu-Hee;Cho, Hwa-Hyun;Lee, Seung-Jun;Yun, Jong-Ho;Chon, Myung-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.1
    • /
    • pp.14-21
    • /
    • 2008
  • In this paper, we propose an adaptive contrast enhancement method using dynamic range segmentation. Histogram Equalization (HE) method is widely used for contrast enhancement. However, histogram equalization method is not suitable for commercial display because it may cause undesirable artifacts due to the significant change in brightness. The proposed algorithm segments the dynamic range of the histogram and redistributes the pixel intensities by the segment area ratio. The proposed method may cause over compressed effect when intensity distribution of an original image is concentrated in specific narrow region. In order to overcome this problem, we introduce an adaptive scale factor. The experimental results show that the proposed algorithm suppresses the significant change in brightness and provides wide histogram distribution compared with histogram equalization.

A Fast and Adaptive Feature Extraction Method for Textured Image Segmentation (Texture 영상 분할을 위한 고속 적응 특징 추출 방법)

  • 이정환;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.12
    • /
    • pp.1249-1265
    • /
    • 1991
  • In this paper, a fast and adaptive feature extraction algorithm for textured image segmentation is proposed. First, a conventional algorithm to extract the statistical texture features are described and we obtain the recursive equations from that conventional method and it is used for extraction of sevaral texture features. And also we propose the adaptive algorithm which extract the texture features. To evaluate the performance of proposed algorithm, we apply the proposed method to artificial texture images. From the results of computer simulation, the proposed method is superior to the conventional one.

  • PDF

Blur Detection through Multinomial Logistic Regression based Adaptive Threshold

  • Mahmood, Muhammad Tariq;Siddiqui, Shahbaz Ahmed;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.110-115
    • /
    • 2019
  • Blur detection and segmentation play vital role in many computer vision applications. Among various methods, local binary pattern based methods provide reasonable blur detection results. However, in conventional local binary pattern based methods, the blur map is computed by using a fixed threshold irrespective of the type and level of blur. It may not be suitable for images with variations in imaging conditions and blur. In this paper we propose an effective method based on local binary pattern with adaptive threshold for blur detection. The adaptive threshold is computed based on the model learned through the multinomial logistic regression. The performance of the proposed method is evaluated using different datasets. The comparative analysis not only demonstrates the effectiveness of the proposed method but also exhibits it superiority over the existing methods.

Adaptive Multi-class Segmentation Model of Aggregate Image Based on Improved Sparrow Search Algorithm

  • Mengfei Wang;Weixing Wang;Sheng Feng;Limin Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.391-411
    • /
    • 2023
  • Aggregates play the skeleton and supporting role in the construction field, high-precision measurement and high-efficiency analysis of aggregates are frequently employed to evaluate the project quality. Aiming at the unbalanced operation time and segmentation accuracy for multi-class segmentation algorithms of aggregate images, a Chaotic Sparrow Search Algorithm (CSSA) is put forward to optimize it. In this algorithm, the chaotic map is combined with the sinusoidal dynamic weight and the elite mutation strategies; and it is firstly proposed to promote the SSA's optimization accuracy and stability without reducing the SSA's speed. The CSSA is utilized to optimize the popular multi-class segmentation algorithm-Multiple Entropy Thresholding (MET). By taking three METs as objective functions, i.e., Kapur Entropy, Minimum-cross Entropy and Renyi Entropy, the CSSA is implemented to quickly and automatically calculate the extreme value of the function and get the corresponding correct thresholds. The image adaptive multi-class segmentation model is called CSSA-MET. In order to comprehensively evaluate it, a new parameter I based on the segmentation accuracy and processing speed is constructed. The results reveal that the CSSA outperforms the other seven methods of optimization performance, as well as the quality evaluation of aggregate images segmented by the CSSA-MET, and the speed and accuracy are balanced. In particular, the highest I value can be obtained when the CSSA is applied to optimize the Renyi Entropy, which indicates that this combination is more suitable for segmenting the aggregate images.

Real-Time Object Segmentation in Image Sequences (연속 영상 기반 실시간 객체 분할)

  • Kang, Eui-Seon;Yoo, Seung-Hun
    • The KIPS Transactions:PartB
    • /
    • v.18B no.4
    • /
    • pp.173-180
    • /
    • 2011
  • This paper shows an approach for real-time object segmentation on GPU (Graphics Processing Unit) using CUDA (Compute Unified Device Architecture). Recently, many applications that is monitoring system, motion analysis, object tracking or etc require real-time processing. It is not suitable for object segmentation to procedure real-time in CPU. NVIDIA provide CUDA platform for Parallel Processing for General Computation to upgrade limit of Hardware Graphic. In this paper, we use adaptive Gaussian Mixture Background Modeling in the step of object extraction and CCL(Connected Component Labeling) for classification. The speed of GPU and CPU is compared and evaluated with implementation in Core2 Quad processor with 2.4GHz.The GPU version achieved a speedup of 3x-4x over the CPU version.

Adaptive Image Segmentation Based on Histogram Transition Zone Analysis

  • Acuna, Rafael Guillermo Gonzalez;Mery, Domingo;Klette, Reinhard
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.299-307
    • /
    • 2016
  • While segmenting "complex" images (with multiple objects, many details, etc.) we experienced a need to explore new ways for time-efficient and meaningful image segmentation. In this paper we propose a new technique for image segmentation which has only one variable for controlling the expected number of segments. The algorithm focuses on the treatment of pixels in transition zones between various label distributions. Results of the proposed algorithm (e.g. on the Berkeley image segmentation dataset) are comparable to those of GMM or HMM-EM segmentation, but are achieved with significantly reduced computation time.

Adaptive Optimal Thresholding for the Segmentation of Individual Tooth from CT Images (CT영상에서 개별 치아 분리를 위한 적응 최적 임계화 방안)

  • Heo, Hoon;Chae, Ok-Sam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.163-174
    • /
    • 2004
  • The 3D tooth model in which each tooth can be manipulated individualy is essential component for the orthodontic simulation and implant simulation in dental field. For the reconstruction of such a tooth model, we need an image segmentation algorithm capable of separating individual tooth from neighboring teeth and alveolar bone. In this paper we propose a CT image normalization method and adaptive optimal thresholding algorithm for the segmenation of tooth region in CT image slices. The proposed segmentation algorithm is based on the fact that the shape and intensity of tooth change gradually among CT image slices. It generates temporary boundary of a tooth by using the threshold value estimated in the previous imge slice, and compute histograms for the inner region and the outer region seperated by the temporary boundary. The optimal threshold value generating the finnal tooth region is computed based on these two histogram.

3D Reconstruction System of Teeth for Dental Simulation (치과 진료 시뮬레이션을 위한 3차원 치아의 재구성 시스템)

  • Heo, Hoon;Choi, Won-Jun;Chae, Ok-Sam
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.133-140
    • /
    • 2004
  • Recently, the dental information systems were rapidly developed in order to store and process the data of patients. But, these systems should serve a doctor a good quality information against disease for diagnostic and surgery purpose so as to success in this field. This function of the system it important to persuade patients to undergo proper surgical operation they needed. Hence, 3D teeth model capable of simulating the dental surgery and treatment is necessary Teeth manipulation of dentistry is performed on individual tooth in dental clinic. io, 3D teeth reconstruction system should have the techniques of segmentation and 3D reconstruction adequate for individual tooth. In this paper, we propose the techniques of adaptive optimal segmentation to segment the individual area of tooth, and reconstruction method of tooth based on contour-based method. Each tooth can be segmented from neighboring teeth and alveolar bone in CT images using adaptive optimal threshold computed differently on tooth. Reconstruction of individual tooth using results of segmentation can be manipulated according to user's input and make the simulation of dental surgery and treatment possible.

Environment-Adaptive Image Segmentation Using Color Invariants (칼라 불변량을 이용한 환경 적응적인 영상 분할)

  • Jang, Seok-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.71-78
    • /
    • 2010
  • Even though various types of image segmentation methods have been extensively introduced, robustly segmenting images to environmental conditions such as illumination changes, shading, highlight, etc, has been known to be a very difficult task. To resolve the problem in some degree, we propose in this paper an environment-adaptive image segmentation approach using color invariants. The suggested method first introduces several color invariants like W, C, U, N, and H, and automatically measures environmental conditions in which images are captured. It then chooses the most adequate color invariant to environmental factors, and effectively extracts edges using the selected invariant. Experimental results show that the proposed method can robustly perform edge-based segmentation rather than existing methods. We expect that our method will be useful in many real applications which require edge-based image segmentation.

Region-Based Moving Object Segmentation for Video Monitoring System (비디오 감시시스템을 위한 영역 기반의 움직이는 물체 분할)

  • 이경미;김종배;이창우;김항준
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.1
    • /
    • pp.30-38
    • /
    • 2003
  • This paper presents an efficient region-based motion segmentation method for segmenting of moving objects in a traffic scene with a focus on a Video Monitoring System (VMS). The presented method consists of two phases: motion detection and motion segmentation. Using the adaptive thresholding technique, the differences between two consecutive frames are analyzed to detect the movements of objects in a scene. To segment the detected regions into meaningful objects which have the similar intensity and motion information, the regions are initially segmented using a k-means clustering algorithm and then, the neighboring regions with the similar motion information are merged. Since we deal with not the whole image, but the detected regions in the segmentation phase, the computational cost is reduced dramatically. Experimental results demonstrate robustness in the occlusions among multiple moving objects and the change in environmental conditions as well.