The radar wind profiler data contaminates with various non-atmospheric components that produce errors in moments and wind velocity estimations. This study implemented an adaptive Gaussian model to detect and remove the clutter from the radar return. This model includes DC filtering, ground clutter recognition, Gaussian fitting, and cost function to mitigate the clutter component. The adaptive model tested for the various types of clutter components and found that it is effective in clutter removal process. It is also applied for the both time series and spectrum datasets. The moments estimated using this method are compared with those derived using conventional DC-filtering clutter removal method. The comparisons show that the proposed method effectively removes the clutter and produce reliable moments.
높은 신뢰도의 댐 유입량 예측은 효율적인 댐 운영을 위해 필요하다. 최근 다층퍼셉트론(Multi Layer Perceptron, MLP)을 활용하여 댐의 유입량을 예측하는 연구들이 진행되었다. 기존 연구들은 MLP의 연산자 중 자료 간의 최적 상관관계를 찾는 optimizer로 경사하강법(Gradient Descent, GD) 기반의 optimizer를 사용하였다. 하지만, GD 기반의 optimizer들은 지역 최적값으로의 수렴 가능성과 저장공간 부재로 인해 예측성능이 저하된다는 단점이 있다. 본 연구는 GD 기반 optimizer 중 Adaptive moments와 Improved Harmony Search (IHS)를 결합한 Adaptive moments combined with Improved Harmony Search (AdamIHS)를 개발하여 GD 기반 optimizer의 단점을 개선하였다. AdamIHS를 사용한 MLP의 학습 및 예측성능을 평가하기 위해 대청댐 유입량을 학습 및 예측하였으며, GD 기반 optimizer를 사용한 MLP의 학습 및 예측성능과 비교하였다. 학습결과를 비교하면, AdamIHS를 사용한 은닉층 5개인 MLP의 Mean Squared Error (MSE) 평균값이 11,577로 가장 낮았다. 예측결과를 비교하면, AdamIHS를 사용한 은닉층 1개인 MLP의 MSE 평균값이 413,262로 가장 낮았다. 본 연구에서 개발된 AdamIHS를 활용하면 다양한 분야에서 향상된 예측성능을 보여줄 수 있을 것이다.
A number of issues related with the vibrational behavior of pretwisted rotating beams featuring anisotropic properties and incorporating adaptive capabilities are considered in this paper. The adaptive capabilities are provided by a system of piezoactuators bonded or embedded into the structure. Based on the converse piezoelectric effect and on the out of phase activation, boundary control moments are pizoelectrically induced at the beam tip. A feedback control law relating the induced bending moments with the kinematical response quantities appropriately selected is used, and its beneficial effects, considered in conjunction with that of the beam anisotropy and structural pretwist upon the eigenvibration characteristics are highlighted
하천과 저수지의 수질을 예측하는 것은 수자원관리를 위해 필요하다. 높은 정확도의 수질 예측을 위해 많은 연구들에서 인공신경망이 활용되었다. 기존 연구들은 매개변수를 탐색하는 인공신경망의 연산자인 옵티마이저로 경사하강법 기반 옵티마이저를 사용하였다. 그러나 경사하강법 기반 옵티마이저는 지역 최적값으로의 수렴 가능성과 해의 저장 및 비교구조가 없다는 단점이 있다. 본 연구에서는 인공신경망을 이용한 수질 예측성능을 향상시키기 위해 개량형 옵티마이저를 개발하여 경사하강법 기반 옵티마이저의 단점을 개선하였다. 본 연구에서 제안한 옵티마이저는 경사하강법 기반 옵티마이저 중 학습오차가 낮은 Adaptive moments (Adam)과 Nesterov-accelerated adaptive moments (Nadam)를 Harmony Search(HS) 또는 Novel Self-adaptive Harmony Search (NSHS)와 결합한 옵티마이저이다. 개량형 옵티마이저의 학습 및 예측성능 평가를 위해 개량형 옵티마이저를 Long Short-Term Memory (LSTM)에 적용하여 국내의 다산 수질관측소의 수질인자인 수온, 용존산소량, 수소이온농도 및 엽록소-a를 학습 및 예측하였다. 학습결과를 비교하면, Nadam combined with NSHS (NadamNSHS)를 사용한 LSTM의 Mean Squared Error (MSE)가 0.002921로 가장 낮았다. 또한, 각 옵티마이저별 4개 수질인자에 대한 MSE 및 R2에 따른 예측순위를 비교하였다. 각 옵티마이저의 평균 순위를 비교하면, NadamNSHS를 사용한 LSTM이 2.25로 가장 높은 것을 확인하였다.
In this paper, we describe an approach for image denoising using the lifting construction, with the spatial adaptive wavelet transform. The adaptive lifting scheme is implemented in spatial domain to be adjusted thresholds to reduce noise. In this approach we represent adaptive characteristics of biorthogonal wavelets for choosing predictors effectively. Predict filter is changed from sample to sample according to local signal features with their vanishing moments. We in this approach have implemented and applied to image denoising by finding a relevant minimax threshold. Experimental results show that the adaptive method of denoising process is compared with existing ones, such as non-adaptive wavelet, CRF(13, 7) and SWE(13, 7) wavelets used by JPEG2000.
In this paper we introduce a method of improving efficiency of the moment estimator of Dekkers, Einmahl and de Haan(1989) for the extreme value index $\beta$. a new estimator of $\beta$ is proposed by adding the third moment ot the original moment estimator which is composed of the first two moments of the log-transformed sample data. We establish asymptotic normality of the new estimator and examine and adaptive procedure for the new estimator. The resulting adaptive estimator proves to be asymptotically better than the moment estimator particularly for $\beta$<0.
In this paper, we propose a human face detection algorithm using adaptive skin color model and neural networks. To attain robustness in the changes of illumination and variability of human skin color, we perform a color segmentation of input image by thresholding adaptively in modified hue-saturation color space (TSV). In order to distinguish faces from other segmented objects, we calculate invariant moments for each face candidate and use the multilayer perceptron neural network of backpropagation algorithm. The simulation results show superior performance for a variety of poses and relatively complex backgrounds, when compared to other existing algorithm.
자기부상 비접촉식 밸런스(MSBS: Magnetic Suspension and Balance System)는 자기력 및 자기모멘트를 이용하여 기계적 접촉 없이 시험 대상체의 위치 및 자세각을 정밀하게 변경하며 외력을 측정하는 것이 가능하다. MSBS를 활용한 풍동실험의 신뢰도 및 안정성을 확보하기 위해서는 위치 및 자세각 제어시스템의 명령 추종 성능과 구성장비의 고장에 대한 강건성을 높일 필요가 있다. 본 연구에서는 실제 개발된 풍동실험용 MSBS의 시뮬레이션을 통해 Iterative Feedback Tuning (IFT)과 $L_1$ adaptive output feedback 알고리즘을 활용하여 제어 이득값을 자동적으로 최적화하고 전류공급장치의 고장에 강건한 제어시스템을 설계하는 방법의 유효성을 검증하였다.
Communications for Statistical Applications and Methods
/
제24권5호
/
pp.493-505
/
2017
Maximum likelihood estimation (MLE) of the generalized extreme value distribution (GEVD) is known to sometimes over-estimate the positive value of the shape parameter for the small sample size. The maximum penalized likelihood estimation (MPLE) with Beta penalty function was proposed by some researchers to overcome this problem. But the determination of the hyperparameters (HP) in Beta penalty function is still an issue. This paper presents some data adaptive methods to select the HP of Beta penalty function in the MPLE framework. The idea is to let the data tell us what HP to use. For given data, the optimal HP is obtained from the minimum distance between the MLE and MPLE. A bootstrap-based method is also proposed. These methods are compared with existing approaches. The performance evaluation experiments for GEVD by Monte Carlo simulation show that the proposed methods work well for bias and mean squared error. The methods are applied to Blackstone river data and Korean heavy rainfall data to show better performance over MLE, the method of L-moments estimator, and existing MPLEs.
When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. The computation of design forces for the non-prismatic beams having symmetrical parabolic haunches (NBSPH) is fairly difficult because of the parabolic change of the cross section. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces and fixed-end moments becomes a complex problem. In this study, the efficiency of the Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference Systems (ANFIS) in predicting the design forces and the design moments of the NBSPH due to temperature changes was investigated. Previously obtained finite element analyses results in the literature were used to train and test the ANN and ANFIS models. The performances of the different models were evaluated by comparing the corresponding values of mean squared errors (MSE) and decisive coefficients ($R^2$). In addition to this, the comparison of ANN and ANFIS with traditional methods was made by setting up Linear-regression (LR) model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.