The auto-encoder network which is a good candidate to handle the modeling of the signal strength attenuation is designed for denoising and compensating the distortion of the received data. It provides a non-linear mapping function by iteratively learning the encoder and the decoder. The encoder is the non-linear mapping function, and the decoder demands accurate data reconstruction from the representation generated by the encoder. In addition, the adaptive network width which supports the automatic generation of new hidden nodes and pruning of inconsequential nodes is also implemented in the proposed algorithm for increasing the efficiency of the algorithm. Simulation results show that the proposed method can improve the neural network training surface to achieve the highest possible accuracy of the signal modeling compared with the conventional modeling method.
Kernel estimates of an unknown regression function are studied. Bandwidth selection rule minimizing integrated absolute error loss function is considered. Under some reasonable assumptions, it is shown that the optimal bandwidth is unique and can be computed by using bisection algorithm. Adaptive bandwidth selection rule is proposed.
In this paper, a robust adaptive backstepping control is developed for efficiency optimization of induction motors with uncertainties. The proposed control scheme consists of efficiency flux control(EFC) using a sliding mode adaptive flux observer and robust speed control(RSC) using a function approximation for mechanical uncertainties. In EFC, it is important to find the flux reference to minimize power losses of induction motors. Therefore, we proposed the optimal flux reference using the electrical power loss function. The sliding mode flux observer is designed to estimate rotor fluxes and variation of inverse rotor time constant. In RSC, the unknown function approximation technique employs nonlinear disturbance observer(NDO) using fuzzy neural networks(FNNs). The proposed controller guarantees both speed tracking and flux tracking. Simulation results are presented to illustrate the effectiveness of the approaches proposed.
Control Variate (CV) is very useful technique for variance reduction in a wide class of queueing network simulations. However, the loss in variance reduction caused by the estimation of the optimum control coefficients is an increasing function of the number of control variables. Therefore, in some situations, it is required to select an optimal set of control variables to maximize the variance reduction . In this paper, we develop the Adaptive Control Variates (ACV) method which selects an optimal set of control variates during the simulation adatively. ACV is useful to maximize the simulation efficiency when we need iterated simulations to find an optimal solution. One such an example is the Simulated Annealing (SA) because, in SA algorithm, we have to repeat in calculating the objective function values at each temperature, The ACV can also be applied to the queueing network optimization problems to find an optimal input parameters (such as service rates) to maximize the throughput rate with a certain cost constraint.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권9호
/
pp.2483-2494
/
2024
Instance segmentation is a challenging research in the field of computer vision, which combines the prediction results of object detection and semantic segmentation to provide richer image feature information. Focusing on the instance segmentation in the street scene, the real-time instance segmentation method based on SOLOv2 is proposed in this paper. First, a cross-stage fusion backbone network based on position attention is designed to increase the model accuracy and reduce the computational effort. Then, the loss of shallow location information is decreased by integrating two-way feature pyramid networks. Meanwhile, cross-stage mask feature fusion is designed to resolve the small objects missed segmentation. Finally, the adaptive minimum loss matching method is proposed to decrease the loss of segmentation accuracy due to object occlusion in the image. Compared with other mainstream methods, our method meets the real-time segmentation requirements and achieves competitive performance in segmentation accuracy.
In this paper, we introduce and analyze a feedback control model of TCP/AQM dynamics. Then, we propose the Pro-active Queue Management (PAQM) mechanism, which can provide proactive congestion avoidance and control using an adaptive congestion indicator and a control function for wide range of traffic environments. The PAQM stabilizes the queue length around a desired level while giving smooth and low packet loss rates independent of the traffic load level under a wide range of traffic environment. The PAQM outperforms other AQM algorithms such as Random Early Detection (RED) [1] and PI-controller [2]
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권3호
/
pp.1345-1362
/
2019
Most active queue management algorithms manage network congestion based on the size of the queue but ignore the network environment which makes queue size change. It seriously affects the response speed of the algorithm. In this paper, a new AQM algorithm named CT-AQM (Change Trend-Adaptive Queue Management) is proposed. CT-AQM predicts the change trend of queue size in the soon future based on the change rate of queue size and the network environment, and optimizes its dropping function. Simulation results indicate that CT-AQM scheme has a significant improvement in loss-rate and throughput.
This paper addresses the adaptive controller for efficiency optimization of induction motors. The paper describes an adaptive controller based on-line efficiency optimization control of a drive that uses a direct vector controlled induction motors. To improve the efficiency of the induction motors, it is important to find the optimal flux reference that minimize power loss. The proposed optimal flux reference is derived using a power loss function that is constructed with stator resistance losses, rotor resistance losses and core losses. The proposed sliding mode flux observer generates estimates the unmeasured rotor fluxes. An optimal efficiency controller has goal of maximizing the efficiency for a given speed and load torque. A simulation shows the effectiveness of the proposed technique.
본 논문은 객체 검출 알고리즘을 위한 통계치 적응적인 선형 회귀 기반 객체 크기 예측 방법을 제안한다. 기존에 제안된 딥 러닝 기반 객체 검출 알고리즘 중 YOLOv2 및 YOLOv3은 객체의 크기를 예측하기 위하여 네트워크의 마지막 계층에 통계치 적응적인 지수 회귀 모델을 사용한다. 하지만, 지수 회귀 모델은 역전파 과정에서 지수 함수의 특성상 매우 큰 미분값을 네트워크의 파라미터로 전파시킬 수 있는 문제점이 있다. 따라서 본 논문에서는 미분 값의 발산 문제를 해결하기 위하여 객체 크기 예측을 위한 통계치 적응적인 선형 회귀 모델을 제안한다. 제안하는 통계치 적응적인 선형 회귀 모델은 딥러닝 네트워크의 마지막 계층에 사용되며, 학습 데이터셋에 존재하는 객체들의 크기에 대한 통계치를 이용하여 객체의 크기를 예측한다. 제안하는 방법의 성능 평가를 위하여 YOLOv3 tiny를 기반으로 제안하는 방법을 적용하여 재설계한 네트워크의 검출 성능과 YOLOv3 tiny의 검출 성능을 비교하였으며, 성능 비교를 위한 데이터셋으로는 UFPR-ALPR 데이터셋을 사용하였다. 실험을 통해 제안하는 방법의 우수성을 검증하였다.
Ship motion is a complex controlled process with several hydrodynamic parameters that vary in wide ranges with respect to ship load condition, speed and surrounding conditions (such as wind, current, tide, etc.). Therefore, to effectively control ships in a designed track is always an important task for ship masters. This paper presents an effective adaptive autopilot ships that ensure the optimal accuracy, economy and stability characteristics. The PID control methodology is modified and parameters of a PID controller is designed to satisfy conditions for an optimal objective function that comprised by heading error, resistance and drift during changing course, and loss of surge velocity or fuel consumption. Designing of the controller for course changing process is based on the Model Reference Adaptive System (MRAS) control theory, while as designing of the automatic course keeping process is based on the Self Tuning Regulator (STR) control theory. Simulation (using MATLAB software) in various disturbance conditions shows that in comparison with conventional PID autopilots, the designed autopilot has several notable advantages: higher course turning speed, lower swing of ship bow even in strong waves and winds, high accuracy of course keeping, shorter time of rudder actions smaller times of changing rudder direction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.