• Title/Summary/Keyword: Adaptive frequency sampling

Search Result 48, Processing Time 0.021 seconds

A Study on the Robust Double Talk Detector for Acoustic Echo Cancellation System (음향반항 제거 시스템을 위한 강인한 동시통화 검출기에 관한 연구)

  • 백수진;박규식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.121-128
    • /
    • 2003
  • Acoustic Echo Cancellation(m) is very active research topic having many applications like teleconference and hands-free communication and it employs Double Talk Detector(DTD) to indicate whether the near-end speaker is active or not. However. the DTD is very sensitive to the variation of acoustical environment and it sometimes provides wrong information about the near-end speaker. In this paper, we are focusing on the development of robust DTD algorithm which is a basic building block for reliable AEC system. The proposed AEC system consists of delayless subband AEC and narrow-band DTD. Delayless subband AEC has proven to have excellent performance of echo cancellation with a low complexity and high convergence speed. In addition, it solves the signal delay problem in the existing subband AEC. On the other hand, the proposed narrowband DTD is operating on low frequency subband. It can take most advantages from the narrow subband such as a low computational complexity due to the down-sampling and the reliable DTD decision making procedure because of the low-frequency nature of the subband signal. From the simulation results of the proposed narrowband DTD and wideband DTD, we confirm that the proposed DTD outperforms the wideband DTD in a sense of removing possible false decision making about the near-end speaker activity.

Lightweight FPGA Implementation of Symmetric Buffer-based Active Noise Canceller with On-Chip Convolution Acceleration Units (온칩 컨볼루션 가속기를 포함한 대칭적 버퍼 기반 액티브 노이즈 캔슬러의 경량화된 FPGA 구현)

  • Park, Seunghyun;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1713-1719
    • /
    • 2022
  • As the noise canceler with a small processing delay increases the sampling frequency, a better-quality output can be obtained. For a single buffer, processing delay occurs because it is impossible to write new data while the processor is processing the data. When synthesizing with anti-noise and output signal, this processing delay creates additional buffering overhead to match the phase. In this paper, we propose an accelerator structure that minimizes processing delay and increases processing speed by alternately performing read and write operations using the Symmetric Even-Odd-buffer. In addition, we compare the structural differences between the two methods of noise cancellation (Fast Fourier Transform noise cancellation and adaptive Least Mean Square algorithm). As a result, using an Symmetric Even-Odd-buffer the processing delay was reduced by 29.2% compared to a single buffer. The proposed Symmetric Even-Odd-buffer structure has the advantage that it can be applied to various canceling algorithms.

A 10-bit 10MS/s differential straightforward SAR ADC

  • Rikan, Behnam Samadpoor;Abbasizadeh, Hamed;Lee, Dong-Soo;Lee, Kang-Yoon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.183-188
    • /
    • 2015
  • A 10-bit 10MS/s low power consumption successive approximation register (SAR) analog-to-digital converter (ADC) using a straightforward capacitive digital-to-analog converter (DAC) is presented in this paper. In the proposed capacitive DAC, switching is always straightforward, and its value is half of the peak-to-peak voltage in each step. Also the most significant bit (MSB) is decided without any switching power consumption. The application of the straightforward switching causes lower power consumption in the structure. The input is sampled at the bottom plate of the capacitor digital-to-analog converter (CDAC) as it provides better linearity and a higher effective number of bits. The comparator applies adaptive power control, which reduces the overall power consumption. The differential prototype SAR ADC was implemented with $0.18{\mu}m$ complementary metal-oxide semiconductor (CMOS) technology and achieves an effective number of bits (ENOB) of 9.49 at a sampling frequency of 10MS/s. The structure consumes 0.522mW from a 1.8V supply. Signal to noise-plus-distortion ratio (SNDR) and spurious free dynamic range (SFDR) are 59.5 dB and 67.1 dB and the figure of merit (FOM) is 95 fJ/conversion-step.

3D Object Retrieval Based on Improved Ray Casting Technique (개선된 레이 캐스팅을 이용한 3차원 객체 검색 기법)

  • Lee Sun-Im;Kim Jae-Hyup;Moon Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.72-80
    • /
    • 2006
  • In this paper, we propose a new descriptor for 3D model retrieval based on shape information. The proposed method consists of two steps including ray casting method and spherical harmonic function, considering geometric properties of model. In the ray casting method, an adaptive sampling is performed for external shape information. By increasing shape information included in the descriptor, we improve the discriminating power of the proposed descriptor. The coefficients of spherical harmonic function are adaptively calculated, considering geometric frequency characteristics. This makes the descriptor more compact and concise without decreasing the retrieval performance. By combining two methods, we achieve more improved retrieval results.

Geometric analysis and anti-aliasing filter for stereoscopic 3D image scaling (스테레오 3D 영상 스케일링에 대한 기하학적 분석 및 anti-aliasing 필터)

  • Kim, Wook-Joong;Hur, Nam-Ho;Kim, Jin-Woong
    • Journal of Broadcast Engineering
    • /
    • v.14 no.5
    • /
    • pp.638-649
    • /
    • 2009
  • Image resizing (or scaling) is one of the most essential issues for the success of visual service because image data has to be adapted to the variety of display features. For 2D imaging, the image scaling is generally accomplished by 2D image re-sampling (i.e., up-/down-sampling). However, when it comes to stereoscopic 3D images, 2D re-sampling methods are inadequate because additional consideration on the third dimension of depth is not incorporated. Practically, stereoscopic 3D image scaling is process with left/right images, not stereoscopic 3D image itself, because the left/right Images are only tangible data. In this paper, we analyze stereoscopic 3D image scaling from two aspects: geometrical deformation and frequency-domain aliasing. A number of 3D displays are available in the market and they have various screen dimensions. As we have more varieties of the displays, efficient stereoscopic 3D image scaling is becoming more emphasized. We present the recommendations for the 3D scaling from the geometric analysis and propose a disparity-adaptive filter for anti-aliasing which could occur during the image scaling process.

A Fusion Sensor System for Efficient Road Surface Monitorinq on UGV (UGV에서 효율적인 노면 모니터링을 위한 퓨전 센서 시스템 )

  • Seonghwan Ryu;Seoyeon Kim;Jiwoo Shin;Taesik Kim;Jinman Jung
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.18-26
    • /
    • 2024
  • Road surface monitoring is essential for maintaining road environment safety through managing risk factors like rutting and crack detection. Using autonomous driving-based UGVs with high-performance 2D laser sensors enables more precise measurements. However, the increased energy consumption of these sensors is limited by constrained battery capacity. In this paper, we propose a fusion sensor system for efficient surface monitoring with UGVs. The proposed system combines color information from cameras and depth information from line laser sensors to accurately detect surface displacement. Furthermore, a dynamic sampling algorithm is applied to control the scanning frequency of line laser sensors based on the detection status of monitoring targets using camera sensors, reducing unnecessary energy consumption. A power consumption model of the fusion sensor system analyzes its energy efficiency considering various crack distributions and sensor characteristics in different mission environments. Performance analysis demonstrates that setting the power consumption of the line laser sensor to twice that of the saving state when in the active state increases power consumption efficiency by 13.3% compared to fixed sampling under the condition of λ=10, µ=10.

ECG Signal Compression based on Adaptive Multi-level Code (적응적 멀티 레벨 코드 기반의 심전도 신호 압축)

  • Kim, Jungjoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.519-526
    • /
    • 2013
  • ECG signal has the feature that is repeated in a cycle of P, Q, R, S, and T waves and is sampled at a high sampling frequency in general. By using the feature of periodic ECG signals, maximizing compression efficiency while minimizing the loss of important information for diagnosis is required. However, the periodic characteristics of such amplitude and period is not constant by measuring time and patients. Even though measured at the same time, the patient's characteristics display different periodic intervals. In this paper, an adaptive multi-level coding is provided by coding adaptively the dominant and non-dominant signal interval of the ECG signal. The proposed method can maximize the compression efficiency by using a multi-level code that applies different compression ratios considering information loss associated with the dominant signal intervals and non-dominant signal intervals. For the case of long time measurement, this method has a merit of maximizing compression ratio compared with existing compression methods that do not use the periodicity of the ECG signal and for the lossless compression coding of non-dominant signal intervals, the method has an advantage that can be stored without loss of information. The effectiveness of the ECG signal compression is proved throughout the experiment on ECG signal of MIT-BIH arrhythmia database.

The Removal of Trembling Artifacts for FORMOSAT-2

  • Chang Li-Hsueh;Wu Shun-Chi;Cheng Hsin-Huei;Chen Nai-Yu
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.142-145
    • /
    • 2005
  • Since the successful launch of FORMOSAT -2 satellite by National Space Organization of Taiwan in May 2004, the Remote Sensing Instrument (RSI) on- board the FORMOSAT -2 has continuously acquired images at one panchromatic and four multi-spectral bands (http://www.nspo.org.tw). In general, the RSI performs well and receives high quality images which proved to be very useful for various applications. However, some RSI panchromatic products exhibit obvious trembling artifact that must be removed. Preliminary study reveals that the trembling artifact is caused by the instability of the spacecraft attitude. Though the magnitude of this artifact is actually less than half of a pixel, it affects the applicability of panchromatic products. A procedure removing this artifact is therefore needed for providing image products of consistent quality. Due to the nature of trembling artifact, it is impossible to describe the trembling amount by employing an analytic model. Relied only on image itself, an algorithm determining trembling amount and removing accordingly the trembling artifact is proposed. The algorithm consists of 3 stages. First, a cross-correlation based scheme is used to measure the relative shift between adjacent scan lines. Follows, the trembling amount is estimated from the measured value. For this purpose, the Fourier transform is utilized to characterize random shifts in frequency domain. An adaptive estimation method is then applied to deduce the approximate trembling amount. In the subsequent stage, image re-sampling operation is applied to restore the trembling-free product. Experimental results show that by applying the proposed algorithm, the unpleasant trembling artifact is no longer evident.

  • PDF