• Title/Summary/Keyword: Adaptive damping control

Search Result 65, Processing Time 0.026 seconds

A Robust Adaptive Control for Permanent Magnet Synchronous Motor Subject to Parameter Uncertainties and Input Saturations

  • Wu, Shaofang;Zhang, Jianwu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2125-2133
    • /
    • 2018
  • To achieve high performance speed regulation, a robust adaptive speed controller is proposed for the permanent magnet synchronous motor (PMSM) subject to parameter uncertainties and input saturations in this paper. A nonlinear adaptive control is introduced to compensate the PMSM speed tracking errors due to uncertainties, disturbances and control input saturation constraints. By combining the adaptive control and the nonlinear robust control based on the interconnection and damping assignment (IDA) strategy, a new robust adaptive control is designed for speed regulation of PMSM. Stability and robustness of the closed-loop control system involved with the constrained control inputs rather than unconstrained control inputs are validated. Simulations for PMSM control in the presence of uncertainties and saturations nonlinearities show that the proposed approach is effective to regulate speed, and the average tracking error using the proposed approach is at least 32% smaller than the compared methods.

An Adaptive UPFC Based S tabilizer forDamping of Low Frequency Oscillation

  • Banaei, M.R.;Hashemi, A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.197-208
    • /
    • 2010
  • Unified power flow controller (UPFC) is the most reliable device in the FACTS concept. It has the ability to adjust all three control parameters effective in power flow and voltage stability. In this paper, a linearized model of a power system installed with a UPFC has been presented. UPFC has four control loops that by adding an extra signal to one of them, increases dynamic stability and load angle oscillations are damped. In this paper, after open loop eigenvalue (electro mechanical mode) calculations, state-space equations have been used to design damping controller and it has been considered to influence active and reactive power flow durations as the input of damping controller, in addition to the common speed duration of synchronous generators as input damper signal. To increase stability, further Lead-Lag and LQR controllers, a novel on-line adaptive controller has been used analytically to identify power system parameters. Closed-loop calculations of the electro mechanical mode verify the improvement of system pole placement after controller designing. Suitable operation of adaptive controller to decrease rotor speed oscillations against input mechanical torque disturbances is confirmed by the simulation results.

TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability

  • Yao, Wei;Fang, Jiakun;Zhao, Ping;Liu, Shilin;Wen, Jinyu;Wang, Shaorong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.252-261
    • /
    • 2013
  • In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have the characteristics of the conventional PID, but adjust the parameters of PID controller online using identified Jacobian information from RBFNN. Hence, it has strong adaptability to the variation of the system operating condition. The effectiveness of the proposed controller is tested on a two-machine five-bus power system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency oscillations under different operating conditions and is superior to the lead-lag damping controller tuned by EA.

The Vibration Control of a Opened Box Structure By a Neuro-Controller (신경망 제어기를 이용한 열린 박스 구조물의 진동 제어)

  • 신윤덕;장승익;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.983-987
    • /
    • 2003
  • Vibration causes noise and makes structure unstable. Especially, due to the effort of lightening, deformation of flexible structure is increased in its shape. Just a little disturbance causes vibration and low damping ratio causes residual vibration lasts long time. In this paper, by using a neuro-controller, which is one of the algorithm of adaptive control. we performed adaptive control of flexible cantilever plate and opened box structure with piezoelectric materials. The proposed adaptive vibration control algorithm, a neuro-controller, is proved in its effectiveness by applying to a opened box structure. The neuro-controller was implemented with DSP, and the real-time adaptive vibration control experiment results confirm that neuro-controller is reliable.

  • PDF

Active Vibration Control of a Opened Box Structure By a Model Reference Neuro-Controller (모델기반 신경망 제어기를 이용한 열린 박스 구조물의 진동제어)

  • Jang, Seung-Ik;Shen, Yun-De;Kee, Chang-Doo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1602-1607
    • /
    • 2003
  • Vibration causes noise and sometimes makes structure unstable. Especially, due to the efforts of lightening, deformation of flexible structure is increased in its shape. Just a little disturbance can cause vibration and low damping ratio makes residual vibration last long time. This research is concerned with the model reference neuro-controller design for the vibration suppression of smart structures. By using a model reference neurocontroller, which is one of the algorithms of adaptive control, we performed an adaptive control of flexible cantilever plate and opened box structure with piezoelectric materials. The proposed adaptive vibration control algorithm, a model reference neuro-controller, was proved in its effectiveness by applying to an opened box structure. The model reference neuro-controller is implemented with DSP, and the real-time adaptive vibration control experiment results confirm that the model reference neuro-controller is reliable.

  • PDF

A Study on the Adaptive Roll Control Scheme for the Top Attack Smart Projectile (상부공격 지능탄의 회전각 적응제어 기법 연구)

  • 홍종태;정수경;최상경
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.61-70
    • /
    • 2000
  • An Adaptive Positive Position Feedback method is presented for controlling the roll of the supersonic smart projectile. The proposed strategy combines the attractive attributes of Positive Position Feedback(PPF) of Goh and Caughey, and Lyapunov stability theorem. The parameters of Adaptive-PFF controller are adjusted in an adaptive mauler in order to follow the performance of an optimal reference model. In this way, optimal damping and zero steady-state errors can be achieved even in the presence of uncertain or changing plant parameters. The performance obtained with the Adaptive-PPF algorithm is compared with conventional PPF control algorithm. The results obtained emphasize the potential of Adaptive-PPF algorithm as an efficient means for controlling plants such as supersonic flight systems with uncertainties in real time.

  • PDF

Adaptive Control of Flexible Robot Actuators with Time-Varying Parameters (시변 파라미터 특성을 갖는 유연한 로봇 엑츄에이터의 적응제어)

  • Park, Ji-Ho;Cho, Hyun-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.250-254
    • /
    • 2008
  • Robot actuators are significantly important with respect to whole control system performance. This paper presents an adaptive control approach for flexible robot actuators with time-varying spring and damping nature. We first represent a perturbed system model with assumption that its information are partially known. Nominal model reference control method is employed for deriving our adaptive control law. We carry out numerical simulation to evaluate the proposed control system and compare simulation results to a well-known control method for demonstrating its effectiveness.

Active Damping of LCL Filter for Three-phase PWM Inverter without Additional Hardware Sensors (추가적인 센서가 필요 없는 3상 PWM 인버터의 LCL 필터 능동댐핑)

  • An, Byoung-Woong;Shin, Hee-Keun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Han, Byoung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.10-17
    • /
    • 2013
  • In this paper, a new active damping method of LCL filter without capacitor voltage sensors is proposed for 3 phase PWM Inverter. Normally, L filter or LCL filter is used as an output filter of grid connected PWM inverter. An LCL filter has more excellent performance than L filter to reduce harmonic current, so the small inductance value can be used. However, the resonance problem in LCL filter is happen due to the zero impedance by the addition of LC branch. To solve the resonance problem, the various active damping method has been proposed so far. Generally, the virtual resistor active damping methods is required to additional hardware sensors for measurement of capacitor voltage and current. In this paper, the new active damping method is proposed without any capacitor voltage or current sensors. In the proposed method, the resonance component of the capacitor voltage of LCL filter can be observed by a simple MRAS(Model Reference Adaptive System) observer without additional hardware sensors, and this component is suppressed by feedforward compensation. The validity of the proposed method is proven by simulation and experiment on the 3-phase PWM inverter system.

An Adaptive Controller Design and its Application for a Flexible Joints Manipulator (유연성 관절.매니퓰레이터에 대한 적응제어기 설계 및 응용)

  • Rho, Hee-Seok;Kim, Eung-Seok;Yi, Keon-Young;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.391-393
    • /
    • 1992
  • This paper proposes an adaptive control system using a 80286 microprocessor-based system and DC servo motors for the control of flexible joint manipulator. In this paper, we construct the controller based on a singular perturbation strategy damping out the elastic oscillations at the joints. we added to the controller the compensator for damping the joint and the term for decreasing the position error between the actuator and the link in order to improve the asymptotical convergence of the position of the link. It is shown that the implementation of this control algorithm can be practical.

  • PDF

An Active Damping Device for a Distributed Power System (전력시스템을 위한 Active Damping Device)

  • La, Jae-Du
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.116-121
    • /
    • 2009
  • Distributed power systems (DPSs) has been widely used various industrial/military applications due to their various advantages. Furthermore, the "All electric" concept, in conjunction with DC DPS, appears to be more advanced and mature in the AEV(All-Electric Vehicular) industry. Generally, AEV carry many loads with varied functions. However, there may be large pulsed loads with short duty ratios which can affect the normal operation of other loads. In this paper, a converter with spilt capacitors and a simple adaptive controller is proposed as a active damping device to mitigate the voltage transients on the bus. The proposed converter allows the smaller capacitive storage. In addition, the proposed control approach has the advantage of requiring only one sensor and performing both the functions of mitigating the voltage bus transients and maintaining the level of energy stored. The control algorithm has been implemented on a TMS320F2812 Digital Signal Processor (DSP). Simulation and experimental results are presented which verify the proposed control principle and demonstrate the practicality of the circuit topology.