• 제목/요약/키워드: Adaptive Variable Prediction

검색결과 45건 처리시간 0.027초

Quality Variable Prediction for Dynamic Process Based on Adaptive Principal Component Regression with Selective Integration of Multiple Local Models

  • Tian, Ying;Zhu, Yuting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권4호
    • /
    • pp.1193-1215
    • /
    • 2021
  • The measurement of the key product quality index plays an important role in improving the production efficiency and ensuring the safety of the enterprise. Since the actual working conditions and parameters will inevitably change to some extent with time, such as drift of working point, wear of equipment and temperature change, etc., these will lead to the degradation of the quality variable prediction model. To deal with this problem, the selective integrated moving windows based principal component regression (SIMV-PCR) is proposed in this study. In the algorithm of traditional moving window, only the latest local process information is used, and the global process information will not be enough. In order to make full use of the process information contained in the past windows, a set of local models with differences are selected through hypothesis testing theory. The significance levels of both T - test and χ2 - test are used to judge whether there is identity between two local models. Then the models are integrated by Bayesian quality estimation to improve the accuracy of quality variable prediction. The effectiveness of the proposed adaptive soft measurement method is verified by a numerical example and a practical industrial process.

H.264 표준에서 가중된 다중 참조 블록을 이용한 효율적인 VLC 표 예측 방법 (An Efficient VLC Table Prediction Scheme for H.264 Using Weighting Multiple Reference Blocks)

  • 허진;오관정;호요성
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.39-42
    • /
    • 2005
  • H.264, a recently proposed international video coding standard, has adopted context-based adaptive variable length coding (CAVLC) as the entropy coding tool in the baseline profile. By combining an adaptive variable length coding technique with context modeling, we can achieve a high degree of redundancy reduction. However, CAVLC in H.264 has weakness that the correct prediction rate of the variable length coding (VLC) table is low in a complex area, such as the boundary of an object. In this paper, we propose a VLC table prediction scheme considering multiple reference blocks; the same position block of the previous frame and the neighboring blocks of the current frame. The proposed algorithm obtains the new weighting values considering correctness of the VLC table for each reference block. Using this method, we can enhance the prediction rate of the VLC table and reduce the bit-rate.

  • PDF

유연한 로보트 매니퓰레이터의 적응제어 (Adaptive Control of A One-Link Flexible Robot Manipulator)

  • 박정일;박종국
    • 전자공학회논문지B
    • /
    • 제30B권5호
    • /
    • pp.52-61
    • /
    • 1993
  • This paper deals with adaptive control method of a robot manipulator with one-flexible link. ARMA model is used as a prediction and estimation model, and adaptive control scheme consists of parameter estimation part and adaptive controller. Parameter estimation part estimates ARMA model's coefficients by using recursive least-squares(RLS) algorithm and generates the predicted output. Variable forgetting factor (VFF) is introduced to achieve an efficient estimation, and adaptive controller consists of reference model, error dynamics model and minimum prediction error controller. An optimal input is obtained by minimizing input torque, it's successive input change and the error between the predicted output and the reference output.

  • PDF

Acoustic Echo Canceller using Adaptive IIR Filters with Prewhitening Method and Variable Step-Size LMS Algorithm

  • Cho, Ju Pil;Hwng, Tae Jin;Baik, Heung Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • 제16권2E호
    • /
    • pp.14-20
    • /
    • 1997
  • The future teleconferencing systems will need an appropriate system which controls properly the acoustic echo for the convenient communication. The conventional acoustic echo cancellation algorithms involve large adaptive filters identifying the impulse response of the echo path. The use of adaptive IIR filters appears to be a reasonable way to reduce computational complexity. Effective cancellation of acoustic echo presented in teleconferencing system requires that adaptive filters have a rapid convergence speed. One of the main problems of acoustic echo cancellation techniques is that the convergence properties degrade for an highly correlated signal input such as speech signals. By the way, the introduction of linear prediction filers onto the structure of the acoustic echo cancellation represents one approach to decorrelate the speech signal. And variable step-size LMS algorithm improves the convergence speed through a little increasing of computational complexity. In this paper, we applied these two methods to the acoustic echo canceller(AEC) and showed that these methods have better performances than the conventional AEC.

  • PDF

A convenient approach for penalty parameter selection in robust lasso regression

  • Kim, Jongyoung;Lee, Seokho
    • Communications for Statistical Applications and Methods
    • /
    • 제24권6호
    • /
    • pp.651-662
    • /
    • 2017
  • We propose an alternative procedure to select penalty parameter in $L_1$ penalized robust regression. This procedure is based on marginalization of prior distribution over the penalty parameter. Thus, resulting objective function does not include the penalty parameter due to marginalizing it out. In addition, its estimating algorithm automatically chooses a penalty parameter using the previous estimate of regression coefficients. The proposed approach bypasses cross validation as well as saves computing time. Variable-wise penalization also performs best in prediction and variable selection perspectives. Numerical studies using simulation data demonstrate the performance of our proposals. The proposed methods are applied to Boston housing data. Through simulation study and real data application we demonstrate that our proposals are competitive to or much better than cross-validation in prediction, variable selection, and computing time perspectives.

H.264 Encoder Hardware Chip설계 (A design of Encoder Hardware Chip For H.264)

  • 서기범
    • 한국정보통신학회논문지
    • /
    • 제13권12호
    • /
    • pp.2647-2654
    • /
    • 2009
  • 본 논문에서는 AMBA 기반으로 사용될 수 있는 H.264용 Encoder Hardware 모듈 (Intra Prediction, Deblocking Filter, Context-Based Adaptive Variable Length Coding, Motion Estimation)을 Integration하여 설계하였다. 설계된 모듈은 한 매크로 블록당 최대 440 cycle내에 동작한다. 제안된 인코더 구조를 검증하기 위하여 JM 9.4부터 reference C를 개발하였으며, reference C로부터 test vector를 추출하여 설계 된 회로를 검증하였다. 제안된 회로는 최대 166MHz clock에서 동작하며, 합성결과 Charterd 0.18 um 공정에 램 포함 약 173만 gate 크기이다. MPW제작시 chip size $6{\times}6mm$의 크기와 208 pin의 Package 형태로 제작 하였다.

농림수산식품분야 정보처리를 위한 적응하는 분기히스토리 길이를 갖는 분기예측 메커니즘 (A Branch Prediction Mechanism With Adaptive Branch History Length for FAFF Information Processing)

  • 고광현;조영일
    • 현장농수산연구지
    • /
    • 제13권1호
    • /
    • pp.3-17
    • /
    • 2011
  • Pipelines of processor have been growing deeper and issue widths wider over the years. If this trend continues, branch misprediction penalty will become very high. Branch misprediction is the single most significant performance limiter for improving processor performance using deeper pipelining. Therefore, more accurate branch predictor becomes an essential part of modem processors for FAFF(Food, Agriculture, Forestry, Fisheries)Information Processing. In this paper, we propose a branch prediction mechanism, using variable length history, which predicts using a bank having higher prediction accuracy among predictions from five banks. Bank 0 is a bimodal predictor which is indexed with the 12 least significant bits of the branch PC. Banks 1,2,3 and 4 are predictors which are indexed with different global history bits and the branch PC. In simulation results, the proposed mechanism outperforms gshare predictors using fixed history length of 12 and 13, up to 6.34% in prediction accuracy. Furthermore, the proposed mechanism outperforms gshare predictors using best history lengths for benchmarks, up to 2.3% in prediction accuracy.

심박변이도를 이용한 적응적 뉴로 퍼지 감정예측 모형에 관한 연구 (Implementing an Adaptive Neuro-Fuzzy Model for Emotion Prediction Based on Heart Rate Variability(HRV))

  • 박성수;이건창
    • 디지털융복합연구
    • /
    • 제17권1호
    • /
    • pp.239-247
    • /
    • 2019
  • 감정을 정확히 예측하는 것은 환자중심의 의료디바이스 개발 및 감성관련 산업에서 매우 중요한 이슈이다. 감정예측에 관한 많은 연구 중 감정 예측에 심박 변동성과 뉴로-퍼지 접근법을 적용한 연구는 없다. 본 연구는 HRV를 이용한 ANFEP(Adaptive Neuro Fuzzy system for Emotion Prediction)을 제안한다. ANFEP의 핵심 기능은 인공 신경망과 퍼지시스템을 통합해 예측 모델을 학습하는 ANFIS(Adaptive Neuro-Fuzzy Inference System)에 기반한다. 제안 모형의 검증을 위해 50명의 실험자를 대상으로 청각자극으로 감정을 유발하고, 심박변이도를 구하여 ANFEP 모형에 입력하였다. STDRR과 RMSSD를 입력으로 하고 입력변수 당 2개의 소속함수로 하는 ANFEP모형이 가장 좋은 결과를 나타났다. 제안한 감정예측 모형을 선형회귀 분석, 서포트 벡터 회귀, 인공신경망, 랜덤 포레스트와 비교한 결과 본 제안모형이 가장 우수한 성능을 보였다. 연구 결과는 보다 적은 입력으로 신뢰성 높은 감정인식이 가능함을 입증했고, 이를 활용해 보다 정확하고 신뢰성 높은 감정인식 시스템 개발에 대한 연구가 필요하다.

가변환경에 적합한 새로운 가변 적응 계수에 관한 연구 (New variable adaptive coefficient algorithm for variable circumstances)

  • 오신범;이채욱
    • 한국산업정보학회논문지
    • /
    • 제4권3호
    • /
    • pp.79-88
    • /
    • 1999
  • 적응 신호처리 분야에서 LMS(Least Mean Square)알고리즘은 그 식의 간편함과 구현의 용이함으로 가장 널리 이용되고 있다. 대부분의 LMS 알고리즘은 수렴비를 조절하는 적응계수를 일정한 값으로 정하는데, 이는 안전성과 속도사이에서 트레이드오프가 존재한다. 이러한 단점을 해결하고 성능을 개선하기 위하여 가변 LMS(VLMS: Variable LMS)가 발표되었다. 그러나 기존에 발표된 알고리즘들은 급격한 환경변화에 적응하지 못하고 발산하는 경우도 있으며 수렴속도에 문제가 있다. 본 논문에서는 기존의 적응계수의 특성을 일부 변형시킴으로서 계산량을 줄이고, 급격한 환경변화에서도 수렴하도록 하는 새로운 알고리즘을 제안하였다. 제안한 적응계수의 성능 확인을 위하여 시스템 식별 및 잡음 제거 시스템에 적용하여 기존의 알고리즘들과 비교하였다.

  • PDF

H.264 기반 스케일러블 비디오 부호화에서 부호화 효율을 고려한 잔여신호 예측에 관한 연구 (Adaptive Residual Prediction for coding efficiency on H.264 Based Scalable Video Coding)

  • 박성호;오형석;김원하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.189-191
    • /
    • 2005
  • In the scalable extension of H.264/AVC, the codec is based on a layered approach to enable spatial scalability. In each layer, the basic concepts of motion compensated prediction and intra prediction are employed as in standard H.264/AVC. Additionally inter-layer prediction algorithm between successive spatial layers is applied to remove redundancy. In the inter-layer prediction, as the prediction we can use the signal that is the upsampled signal of the lower resolution layer. In this case, coding efficiency can be variable as the kinds of interpolation filter. In this paper, we investigate the approach to select the interpolation filter for residual signal in order to optimal prediction.

  • PDF