• Title/Summary/Keyword: Adaptive Surrogate Model

Search Result 15, Processing Time 0.021 seconds

An efficient reliability analysis strategy for low failure probability problems

  • Cao, Runan;Sun, Zhili;Wang, Jian;Guo, Fanyi
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.209-218
    • /
    • 2021
  • For engineering, there are two major challenges in reliability analysis. First, to ensure the accuracy of simulation results, mechanical products are usually defined implicitly by complex numerical models that require time-consuming. Second, the mechanical products are fortunately designed with a large safety margin, which leads to a low failure probability. This paper proposes an efficient and high-precision adaptive active learning algorithm based on the Kriging surrogate model to deal with the problems with low failure probability and time-consuming numerical models. In order to solve the problem with multiple failure regions, the adaptive kernel-density estimation is introduced and improved. Meanwhile, a new criterion for selecting points based on the current Kriging model is proposed to improve the computational efficiency. The criterion for choosing the best sampling points considers not only the probability of misjudging the sign of the response value at a point by the Kriging model but also the distribution information at that point. In order to prevent the distance between the selected training points from too close, the correlation between training points is limited to avoid information redundancy and improve the computation efficiency of the algorithm. Finally, the efficiency and accuracy of the proposed method are verified compared with other algorithms through two academic examples and one engineering application.

Structural reliability assessment using an enhanced adaptive Kriging method

  • Vahedi, Jafar;Ghasemi, Mohammad Reza;Miri, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.677-691
    • /
    • 2018
  • Reliability assessment of complex structures using simulation methods is time-consuming. Thus, surrogate models are usually employed to reduce computational cost. AK-MCS is a surrogate-based Active learning method combining Kriging and Monte-Carlo Simulation for structural reliability analysis. This paper proposes three modifications of the AK-MCS method to reduce the number of calls to the performance function. The first modification is related to the definition of an initial Design of Experiments (DoE). In the original AK-MCS method, an initial DoE is created by a random selection of samples among the Monte Carlo population. Therefore, samples in the failure region have fewer chances to be selected, because a small number of samples are usually located in the failure region compared to the safe region. The proposed method in this paper is based on a uniform selection of samples in the predefined domain, so more samples may be selected from the failure region. Another important parameter in the AK-MCS method is the size of the initial DoE. The algorithm may not predict the exact limit state surface with an insufficient number of initial samples. Thus, the second modification of the AK-MCS method is proposed to overcome this problem. The third modification is relevant to the type of regression trend in the AK-MCS method. The original AK-MCS method uses an ordinary Kriging model, so the regression part of Kriging model is an unknown constant value. In this paper, the effect of regression trend in the AK-MCS method is investigated for a benchmark problem, and it is shown that the appropriate choice of regression type could reduce the number of calls to the performance function. A stepwise approach is also presented to select a suitable trend of the Kriging model. The numerical results show the effectiveness of the proposed modifications.

Design optimization of tuned mass damper for the vibration of hydraulic pipeline (유압 배관 진동 감쇠를 위한 동조질량감쇠기 최적 설계)

  • Kim, Chan-Kyeong;Baek, Seunghun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.64-72
    • /
    • 2021
  • This paper carried out the optimal design of Tuned Mass Damper (TMD) to attenuate the vibrational energy of pipeline subjected to fluid movement. Under the uncertainty of the vibration source and the specification of a pipeline system, an adaptive approach to design TMD is suggested. A surrogate pipeline system model was designed using MATLAB, and the optimal design method was developed based on the surrogate pipe model. The developed optimization method was validated using Finite Element (FE) model in ANSYS Workbench. And the TMD was designed to account for measurement error and installed on the industrial pipeline system. It showed that the pipeline vibrational amplitude was reduced by 95 % after installing the TMD.

Reliability-based combined high and low cycle fatigue analysis of turbine blade using adaptive least squares support vector machines

  • Ma, Juan;Yue, Peng;Du, Wenyi;Dai, Changping;Wriggers, Peter
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.293-304
    • /
    • 2022
  • In this work, a novel reliability approach for combined high and low cycle fatigue (CCF) estimation is developed by combining active learning strategy with least squares support vector machines (LS-SVM) (named as ALS-SVM) surrogate model to address the multi-resources uncertainties, including working loads, material properties and model itself. Initially, a new active learner function combining LS-SVM approach with Monte Carlo simulation (MCS) is presented to improve computational efficiency with fewer calls to the performance function. To consider the uncertainty of surrogate model at candidate sample points, the learning function employs k-fold cross validation method and introduces the predicted variance to sequentially select sampling. Following that, low cycle fatigue (LCF) loads and high cycle fatigue (HCF) loads are firstly estimated based on the training samples extracted from finite element (FE) simulations, and their simulated responses together with the sample points of model parameters in Coffin-Manson formula are selected as the MC samples to establish ALS-SVM model. In this analysis, the MC samples are substituted to predict the CCF reliability of turbine blades by using the built ALS-SVM model. Through the comparison of the two approaches, it is indicated that the reliability model by linear cumulative damage rule provides a non-conservative result compared with that by the proposed one. In addition, the results demonstrate that ALS-SVM is an effective analysis method holding high computational efficiency with small training samples to gain accurate fatigue reliability.

Improved VFM Method for High Accuracy Flight Simulation (고정밀 비행 시뮬레이션을 위한 개선 VFM 기법 연구)

  • Lee, Chiho;Kim, Mukyeom;Lee, Jae-Lyun;Jeon, Kwon-Su;Tyan, Maxim;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.709-719
    • /
    • 2021
  • Recent progress in analysis and flight simulation methods enables wider use of a virtual certification and reduces number of certification flight tests. Aerodynamic database (AeroDB) is one of the most important components for the flight simulation. It is composed of aerodynamic coefficients at a range of flight conditions and control deflections. This paper proposes and efficient method for construction of AeroDB that combines Gaussian Process based Variable Fidelity Modeling with adaptive sampling algorithm. A case study of virtual certification of a F-16 fighter is presented. Four AeroDB were constructed using different number and distribution of high-fidelity data points. The constructed database is then used to simulate gliding, short pitch, and roll response. Compliance with certification regulations is then checked. The case study demonstrates that the proposed method can significantly reduce number of high-fidelity data points while maintaining high accuracy of the simulation.