• Title/Summary/Keyword: Adaptive Surrogate Model

Search Result 15, Processing Time 0.029 seconds

Self-adaptive sampling for sequential surrogate modeling of time-consuming finite element analysis

  • Jin, Seung-Seop;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.611-629
    • /
    • 2016
  • This study presents a new approach of surrogate modeling for time-consuming finite element analysis. A surrogate model is widely used to reduce the computational cost under an iterative computational analysis. Although a variety of the methods have been widely investigated, there are still difficulties in surrogate modeling from a practical point of view: (1) How to derive optimal design of experiments (i.e., the number of training samples and their locations); and (2) diagnostics of the surrogate model. To overcome these difficulties, we propose a sequential surrogate modeling based on Gaussian process model (GPM) with self-adaptive sampling. The proposed approach not only enables further sampling to make GPM more accurate, but also evaluates the model adequacy within a sequential framework. The applicability of the proposed approach is first demonstrated by using mathematical test functions. Then, it is applied as a substitute of the iterative finite element analysis to Monte Carlo simulation for a response uncertainty analysis under correlated input uncertainties. In all numerical studies, it is successful to build GPM automatically with the minimal user intervention. The proposed approach can be customized for the various response surfaces and help a less experienced user save his/her efforts.

An artificial neural network residual kriging based surrogate model for curvilinearly stiffened panel optimization

  • Sunny, Mohammed R.;Mulani, Sameer B.;Sanyal, Subrata;Kapania, Rakesh K.
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.235-251
    • /
    • 2016
  • We have performed a design optimization of a stiffened panel with curvilinear stiffeners using an artificial neural network (ANN) residual kriging based surrogate modeling approach. The ANN residual kriging based surrogate modeling involves two steps. In the first step, we approximate the objective function using ANN. In the next step we use kriging to model the residue. We optimize the panel in an iterative way. Each iteration involves two steps-shape optimization and size optimization. For both shape and size optimization, we use ANN residual kriging based surrogate model. At each optimization step, we do an initial sampling and fit an ANN residual kriging model for the objective function. Then we keep updating this surrogate model using an adaptive sampling algorithm until the minimum value of the objective function converges. The comparison of the design obtained using our optimization scheme with that obtained using a traditional genetic algorithm (GA) based optimization scheme shows satisfactory agreement. However, with this surrogate model based approach we reach optimum design with less computation effort as compared to the GA based approach which does not use any surrogate model.

Kriging Surrogate Model-based Design Optimization of Vehicle and Adaptive Cruise Control Parameters Considering Fuel Efficiency (연비를 고려한 차량 및 적응형 순항 제어 파라미터의 크리깅 대체모델 기반 최적설계)

  • Kim, Hansu;Song, Yuho;Lee, Seungha;Huh, Kunsoo;Lee, Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.817-823
    • /
    • 2017
  • In the past, research has been conducted on the development of an adaptive cruise control algorithm considering fuel efficiency, and an adaptive cruise control system considering fuel efficiency have been developed. However, research on optimizing vehicle and adaptive cruise control parameters in order to maximize performances is insufficient. In this study, the design optimization of vehicle and control parameters considering fuel efficiency, trackability, ride comfort and safe distance is performed. This paper proposes performance measures of vehicle behavior and develops an adaptive cruise control system. In addition, based on the screening of vehicle parameters that significantly influence performances, kriging surrogate models are constructed through a sequential design of experiment, and kriging surrogate model-based design optimization is performed to maximize fuel efficiency and satisfy target performances.

An Adaptive Optimization Algorithm Based on Kriging Interpolation with Spherical Model and its Application to Optimal Design of Switched Reluctance Motor

  • Xia, Bin;Ren, Ziyan;Zhang, Yanli;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1544-1550
    • /
    • 2014
  • In this paper, an adaptive optimization strategy utilizing Kriging model and genetic algorithm is proposed for the optimal design of electromagnetic devices. The ordinary Kriging assisted by the spherical covariance model is used to construct surrogate models. In order to improve the computational efficiency, the adaptive uniform sampling strategy is applied to generate sampling points in design space. Through several iterations and gradual refinement process, the global optimal point can be found by genetic algorithm. The proposed algorithm is validated by application to the optimal design of a switched reluctance motor, where the stator pole face and shape of pole shoe attached to the lateral face of the rotor pole are optimized to reduce the torque ripple.

An evolutionary approach for structural reliability

  • Garakaninezhad, Alireza;Bastami, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.329-339
    • /
    • 2019
  • Assessment of failure probability, especially for a complex structure, requires a considerable number of calls to the numerical model. Reliability methods have been developed to decrease the computational time. In this approach, the original numerical model is replaced by a surrogate model which is usually explicit and much faster to evaluate. The current paper proposed an efficient reliability method based on Monte Carlo simulation (MCS) and multi-gene genetic programming (MGGP) as a robust variant of genetic programming (GP). GP has been applied in different fields; however, its application to structural reliability has not been tested. The current study investigated the performance of MGGP as a surrogate model in structural reliability problems and compares it with other surrogate models. An adaptive Metropolis algorithm is utilized to obtain the training data with which to build the MGGP model. The failure probability is estimated by combining MCS and MGGP. The efficiency and accuracy of the proposed method were investigated with the help of five numerical examples.

An ensemble learning based Bayesian model updating approach for structural damage identification

  • Guangwei Lin;Yi Zhang;Enjian Cai;Taisen Zhao;Zhaoyan Li
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.61-81
    • /
    • 2023
  • This study presents an ensemble learning based Bayesian model updating approach for structural damage diagnosis. In the developed framework, the structure is initially decomposed into a set of substructures. The autoregressive moving average (ARMAX) model is established first for structural damage localization based structural motion equation. The wavelet packet decomposition is utilized to extract the damage-sensitive node energy in different frequency bands for constructing structural surrogate models. Four methods, including Kriging predictor (KRG), radial basis function neural network (RBFNN), support vector regression (SVR), and multivariate adaptive regression splines (MARS), are selected as candidate structural surrogate models. These models are then resampled by bootstrapping and combined to obtain an ensemble model by probabilistic ensemble. Meanwhile, the maximum entropy principal is adopted to search for new design points for sample space updating, yielding a more robust ensemble model. Through the iterations, a framework of surrogate ensemble learning based model updating with high model construction efficiency and accuracy is proposed. The specificities of the method are discussed and investigated in a case study.

Crashworthiness Analysis and Shape Design Optimization of Thin-walled Corrugated Tubes under Axial Impact (축 방향 충격을 받는 박판 파형관의 충돌안전도 해석 및 형상 최적설계)

  • Ahn, Seung Ho;Jung, Hyun Seung;Kim, Jin Sung;Son, Seung Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.128-135
    • /
    • 2021
  • Thin-walled tubes have been widely used as energy absorbing devices because they are light and have high energy-absorption efficiency. However, the downside is that conventional thin-walled tubes usually exhibit an excessive initial peak crushing force (IPCF) and a large fluctuation in the load-displacement curve, and thus lack stability as energy absorbing devices. Corrugated tubes were introduced to reduce IPCF and to increase the stability of collision energy-absorbing devices. Since the performance of corrugated tubes is highly influence by geometry, design optimization methods can be utilized to optimize the performance of corrugated tubes. In this paper, we utilize shape design optimization based on an adaptive surrogate model for crashworthiness analysis. The amplitude and wavelength of the corrugation, as well as curvature changes in the features, are the design variables. A morphing methodology is adopted to perform shape design parameterization. Through numerical examples, we compare optimal design results based on the adaptive surrogate model, with optimal results based on conventional surrogate models, and we show that direct optimal design methods produce more efficient results.

Prediction of the compressive strength of self-compacting concrete using surrogate models

  • Asteris, Panagiotis G.;Ashrafian, Ali;Rezaie-Balf, Mohammad
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.137-150
    • /
    • 2019
  • In this paper, surrogate models such as multivariate adaptive regression splines (MARS) and M5P model tree (M5P MT) methods have been investigated in order to propose a new formulation for the 28-days compressive strength of self-compacting concrete (SCC) incorporating metakaolin as a supplementary cementitious materials. A database comprising experimental data has been assembled from several published papers in the literature and the data have been used for training and testing. In particular, the data are arranged in a format of seven input parameters covering contents of cement, coarse aggregate to fine aggregate ratio, water, metakaolin, super plasticizer, largest maximum size and binder as well as one output parameter, which is the 28-days compressive strength. The efficiency of the proposed techniques has been demonstrated by means of certain statistical criteria. The findings have been compared to experimental results and their comparisons shows that the MARS and M5P MT approaches predict the compressive strength of SCC incorporating metakaolin with great precision. The performed sensitivity analysis to assign effective parameters on 28-days compressive strength indicates that cementitious binder content is the most effective variable in the mixture.

Bayesian Optimization Analysis of Containment-Venting Operation in a Boiling Water Reactor Severe Accident

  • Zheng, Xiaoyu;Ishikawa, Jun;Sugiyama, Tomoyuki;Maruyama, Yu
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.434-441
    • /
    • 2017
  • Containment venting is one of several essential measures to protect the integrity of the final barrier of a nuclear reactor during severe accidents, by which the uncontrollable release of fission products can be avoided. The authors seek to develop an optimization approach to venting operations, from a simulation-based perspective, using an integrated severe accident code, THALES2/KICHE. The effectiveness of the containment-venting strategies needs to be verified via numerical simulations based on various settings of the venting conditions. The number of iterations, however, needs to be controlled to avoid cumbersome computational burden of integrated codes. Bayesian optimization is an efficient global optimization approach. By using a Gaussian process regression, a surrogate model of the "black-box" code is constructed. It can be updated simultaneously whenever new simulation results are acquired. With predictions via the surrogate model, upcoming locations of the most probable optimum can be revealed. The sampling procedure is adaptive. Compared with the case of pure random searches, the number of code queries is largely reduced for the optimum finding. One typical severe accident scenario of a boiling water reactor is chosen as an example. The research demonstrates the applicability of the Bayesian optimization approach to the design and establishment of containment-venting strategies during severe accidents.

A new structural reliability analysis method based on PC-Kriging and adaptive sampling region

  • Yu, Zhenliang;Sun, Zhili;Guo, Fanyi;Cao, Runan;Wang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.271-282
    • /
    • 2022
  • The active learning surrogate model based on adaptive sampling strategy is increasingly popular in reliability analysis. However, most of the existing sampling strategies adopt the trial and error method to determine the size of the Monte Carlo (MC) candidate sample pool which satisfies the requirement of variation coefficient of failure probability. It will lead to a reduction in the calculation efficiency of reliability analysis. To avoid this defect, a new method for determining the optimal size of the MC candidate sample pool is proposed, and a new structural reliability analysis method combining polynomial chaos-based Kriging model (PC-Kriging) with adaptive sampling region is also proposed (PCK-ASR). Firstly, based on the lower limit of the confidence interval, a new method for estimating the optimal size of the MC candidate sample pool is proposed. Secondly, based on the upper limit of the confidence interval, an adaptive sampling region strategy similar to the radial centralized sampling method is developed. Then, the k-means++ clustering technique and the learning function LIF are used to complete the adaptive design of experiments (DoE). Finally, the effectiveness and accuracy of the PCK-ASR method are verified by three numerical examples and one practical engineering example.