• Title/Summary/Keyword: Adaptive Resonance Theory

Search Result 59, Processing Time 0.022 seconds

An U-Healthcare Implementation for Diabetes Patient based on Context Awareness

  • Kim, Jeong-Won
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.412-417
    • /
    • 2009
  • With ubiquitous computing aid, it can improve human being's life quality if all people have more convenient medical service under pervasive computing environment. In this paper, for a pervasive health care application for diabetes patient, we've implemented a health care system, which is composed of three parts. Various sensors monitor both outer and inner environment of human such as temperature, blood pressure, pulse, and glycemic index, etc. These sensors form zigbee-based sensor network. And as a backend, medical information server accumulates sensing data and performs back-end processing. To simply transfer these sensing values to a medical team may be a low level's medical service. So, we've designed a model with context awareness for more improved medical service which is based on ART(adaptive resonance theory) neural network. Our experiments show that a proposed healthcare system can provide improved medical service because it can recognize current context of patient more concretely.

A Study on the Hangeul Pattern Classification by Using Adaptive Resonance Theory Neural Network (ART 신경회로망을 이용한 한글 유형 분류에 관한 연구)

  • Jang, Jae-Hyuk;Park, Chang-Han;NamKung, Jae-Chan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.603-606
    • /
    • 2003
  • 본 논문에서는 ART(Adaptive Resonance Theory) 신경회로망을 이용하여 한글 모음을 인식하고, 그 유형을 분류하는 방법을 제안하였다. 기존의 연구들은 단순히 문자의 선분, 획 등의 정합만을 이용하여 한글의 자소 분류에 중점을 두었다. 그러나 인식 대상 운자의 특성이 각각 다르므로 효율적인 인식을 위해서는 먼저 포괄적인 특정적 유형 분류가 필요하다. 제안된 한글 유형 분류 시스템에서는 먼저 ART 신경회로망의 문제점인 증가분류 알고리즘의 단점을 최소화할 수 있도록 비교층에 최초 활성화패턴의 크기를 기억하는 메모리를 두고 각 층간 하향틀 변화를 경계인수 값을 "1" 이내로 제한하여 이미 입력된 패턴을 다시 입력할 때, 새로운 노드의 활성화를 방지하여 비교적 입력순서에 둔감한 분류가 가능하였다. 실험 결과 제안된 시스템에서는 한글의 6형식 중 1, 3, 4, 5형식 분류는 평균 97.3% 의 분류율을 보였으나, 나머지 2, 6형식 분류는 다소 떨어지는 평균 94.9% 분류율를 보였다.

  • PDF

Performance Evaluation of Pixel Clustering Approaches for Automatic Detection of Small Bowel Obstruction from Abdominal Radiographs

  • Kim, Kwang Baek
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.153-159
    • /
    • 2022
  • Plain radiographic analysis is the initial imaging modality for suspected small bowel obstruction. Among the many features that affect the diagnosis of small bowel obstruction (SBO), the presence of gas-filled or fluid-filled small bowel loops is the most salient feature that can be automatized by computer vision algorithms. In this study, we compare three frequently applied pixel-clustering algorithms for extracting gas-filled areas without human intervention. In a comparison involving 40 suspected SBO cases, the Possibilistic C-Means and Fuzzy C-Means algorithms exhibited initialization-sensitivity problems and difficulties coping with low intensity contrast, achieving low 72.5% and 85% success rates in extraction. The Adaptive Resonance Theory 2 algorithm is the most suitable algorithm for gas-filled region detection, achieving a 100% success rate on 40 tested images, largely owing to its dynamic control of the number of clusters.

The Fuzzy Neural Network Utilizing A Fuzzy Learning Rule (조건 확률을 퍼지화한 학습 법칙을 사용하는 퍼지 신경회로망 모델)

  • 김용수;함창현;백용선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.207-210
    • /
    • 2000
  • 학습법칙은 신경회로망의 성능을 좌우하는 중요한 요소의 하나이다. Kohonen의 합습법칙등이 개발되어 사용되어 왔으나 Underutilization 문제가 있어 실제 사용사에 문제가 있어 왔다. 본 논문에서 제시하는 학습법칙은 이를 부분적으로 해결하였다. 또한 이 학습법칙을 ART(Adaptive Resonance Theory)-1과 Kohonen의 자기 구조 특징 지도의 장점을 조합한 개선된 IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하였고, 성능을 평가하기 위해 가우시안 분포의 데이터와 IRIS 데이터를 각각 사용하여 실험하였다.

  • PDF

Stress Classification Using Artificial Neural Networks and Fatigue Life Assessment (인공신경망을 이용한 계측응력 분류 및 피로수명 평가)

  • Jung Sung-Wook;Chang Yoon-Suk;Choi Jae-Boons;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.520-527
    • /
    • 2006
  • The design of major industrial facilities for the prevention of fatigue failure is customarily done by defining a set of transients and performing a calculation of cumulative usage factor. However, sometimes, the inherent conservatism or lack of details as well as unanticipated transients in old plant may cause maintenance problems. Even though several famous on-line monitoring and diagnosis systems have been developed world-widely, in this paper, a new system fur fatigue monitoring and life evaluation of crane is proposed to reduce customizing effort and purchasing cost. With regard to the system, at first, comprehensive operating transient data has been acquired at critical locations of crane. The real-time data were classified, by using adaptive resonance theory that is one of typical artificial neural network, into representative stress groups. Then the each classified stress pattern was mapped to calculated cumulative usage factor in accordance with ASME procedure. Thereby, promising results were obtained fur the crane and it is believed that the developed system can be applicable to other major facilities extensively.

HIERARCHICAL CLUSTER ANALYSIS by arboART NEURAL NETWORKS and its APPLICATION to KANSEI EVALUATION DATA ANALYSIS

  • Ishihara, Shigekazu;Ishihara, Keiko;Nagamachi, Mitsuo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.195-200
    • /
    • 2002
  • ART (Adaptive Resonance Theory [1]) neural network and its variations perform non-hierarchical clustering by unsupervised learning. We propose a scheme "arboART" for hierarchical clustering by using several ART1.5-SSS networks. It classifies multidimensional vectors as a cluster tree, and finds features of clusters. The Basic idea of arboART is to use the prototype formed in an ART network as an input to other ART network that has looser distance criteria (Ishihara, et al., [2,3]). By sending prototype vectors made by ART to one after another, many small categories are combined into larger and more generalized categories. We can draw a dendrogram using classification records of sample and categories. We have confirmed its ability using standard test data commonly used in pattern recognition community. The clustering result is better than traditional computing methods, on separation of outliers, smaller error (diameter) of clusters and causes no chaining. This methodology is applied to Kansei evaluation experiment data analysis.

  • PDF

Robust control using Analog Adaptive Resonance Theory

  • Son, Jun-Hyeok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.93-95
    • /
    • 2006
  • In many control system applications, the system designed must not only satisfy the damping and accuracy specifications, but the control must also yield performance that is robust to external disturbance and parameter variations. We have shown that feedback in conventional control systems has the inherent ability of reducing the effects of external disturbance and parameter variations. Unfortunately, robustness with the conventional feedback configuration is achieved only with a high loop gain, which is normally detrimental to stability. The design of intelligent, autonomous machines to perform tasks that are dull, repetitive, hazardous, or that require skill, strength, or dexterity beyond the capability of humans is the ultimate goal of robotics research. This paper prove the robust control using Analog Adaptive Resonance Theorv(ART2) Algorithm about case study.

  • PDF

Rotation and Size Invariant Fingerprint Recognition Using The Neural Net (회전과 크기변화에 무관한 신경망을 이용한 지문 인식)

  • Lee, Nam-Il;U, Yong-Tae;Lee, Jeong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.2
    • /
    • pp.215-224
    • /
    • 1994
  • In this paper, the rotation and size invariant fingerprint recognition using the neural network EART (Extended Adaptive Resonance Theory) is studied ($515{\times}512$) gray level fingerprint images are converted into the binary thinned images based on the adaptive threshold and a thinning algorithm. From these binary thinned images, we extract the ending points and the bifurcation points, which are the most useful critical feature points in the fingerprint images, using the $3{\times}3$ MASK. And we convert the number of these critical points and the interior angles of convex polygon composed of the bifurcation points into the 40*10 critical using the weighted code which is invariant of rotation and size as the input of EART. This system produces very good and efficient results for the rotation and size variations without the restoration of the binary thinned fingerprints.

  • PDF

Tool Breakage Detection in Face Milling Using a Self Organized Neural Network (자기구성 신경회로망을 이용한 면삭밀링에서의 공구파단검출)

  • 고태조;조동우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1939-1951
    • /
    • 1994
  • This study introduces a new tool breakage detecting technology comprised of an unsupervised neural network combined with adaptive time series autoregressive(AR) model where parameters are estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(Recursive Least Square). Experiment indicates that AR parameters are good features for tool breakage, therefore it can be detected by tracking the evolution of the AR parameters during milling process. an ART 2(Adaptive Resonance Theory 2) neural network is used for clustering of tool states using these parameters and the network is capable of self organizing without supervised learning. This system operates successfully under the wide range of cutting conditions without a priori knowledge of the process, with fast monitoring time.

A New QRS Detection Algorithm Using Index Function Based on Resonance Theory (Resonace theory에 기반을 둔 index function을 통한 새로운 QRS 검출 알고리즘)

  • Lee, Jeon;Yoon, Hyung-Ro;Lee, Kyung-Joong
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.107-112
    • /
    • 2003
  • This paper describes a new simple QRS detection algorithm using index function based on resonance theory. The ECG signal can be modeled with several sinusoidal pulses and its first difference has some relations with the amplitude and frequency of sinusoidal pulse. Based on above fact, an index function, similar to the square of the imaginary part of a simple R-L-C circuit, was designed. A QRS complex is detected by applying the adaptive method to the response of index function. The algorithm showed a performance comparable to or higher than the other algorithms. Because it does not require any complicated preprocessing or postprocessing, it can be implemented in real time.