• Title/Summary/Keyword: Adaptive Resonance Theory

Search Result 59, Processing Time 0.027 seconds

Network based Intrusion Detection System using Adaptive Resonance Theory 2 (Adaptive Resonance Theory 2를 이용한 네트워크 기반의 침입 탐지 모델 연구)

  • 김진원;노태우;문종섭;고재영;최대식;한광택
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.3
    • /
    • pp.129-139
    • /
    • 2002
  • As internet expands, the possibility of attack through the network is increasing. So we need the technology which can detect the attack to the system or the network spontaneously. The purpose of this paper proposes the system to detect intrusion automatically using the Adaptive Resonance Theory2(ART2) which is one of artificial neural network The parameters of the system was tunned by ART2 algorithm using a lot of normal packets and various attack packets which were intentionally generated by attack tools. The results were compared and analyzed with conventional methods.

Adaptive Resource Management Method base on ART in Cloud Computing Environment (클라우드 컴퓨팅 환경에서 빅데이터 처리를 위한 ART 기반의 적응형 자원관리 방법)

  • Cho, Kyucheol;Kim, JaeKwon
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.111-119
    • /
    • 2014
  • The cloud environment need resource management method that to enable the big data issue and data analysis technology. Existing resource management uses the limited calculation method, therefore concentrated the resource bias problem. To solve this problem, the resource management requires the learning-based scheduling using resource history information. In this paper, we proposes the ART (Adaptive Resonance Theory)-based adaptive resource management. Our proposed method assigns the job to the suitable method with the resource monitoring and history management in cloud computing environment. The proposed method utilizes the unsupervised learning method. Our goal is to improve the data processing and service stability with the adaptive resource management. The propose method allow the systematic management, and utilize the available resource efficiently.

IDS System Using Adaptive Resonance Theory2 (Adaptive Resonance Theory2를 이용한 침입탐지 시스템)

  • 박현철;노태우;서재수;박일곤;김진원;문종섭;한광택;최대식;고재영
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2001.11a
    • /
    • pp.43-47
    • /
    • 2001
  • 본 논문은 신경망 이론중 하나인 Adaptive Resonance Theory(ART)을 사용하여 네트워크 상의 불법적인 침입을 탐지하는 기법에 대한 연구이다. ART는 비교사 학습을 하는 신경망으로써, 적응적인 학습능력이 있으며, 또 새로운 패턴에 대해서 새로운 클러스터를 생산하는 능력이 있다. ART의 이러한 특성을 이용하여, 여러 가지 침입패턴을 네트워크상에서 생산하여 학습을 시키고, 또 test 했으며, test 이후에도 on-line 상에서 새로운 공격 pattern도 찾아냄을 보였다. 따라서, 이미 알려진 침입뿐만 아니라 새롭게 발생하는 침입 기법에 대해서도 새로운 rule의 첨가 없이 적극적으로 대처할 수 있을 것으로 예측된다.

  • PDF

Adaptive Intrusion Detection System Based on SVM and Clustering (SVM과 클러스터링 기반 적응형 침입탐지 시스템)

  • Lee, Han-Sung;Im, Young-Hee;Park, Joo-Young;Park, Dai-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.237-242
    • /
    • 2003
  • In this paper, we propose a new adaptive intrusion detection algorithm based on clustering: Kernel-ART, which is composed of the on-line clustering algorithm, ART (adaptive resonance theory), combining with mercer-kernel and concept vector. Kernel-ART is not only satisfying all desirable characteristics in the context of clustering-based IDS but also alleviating drawbacks associated with the supervised learning IDS. It is able to detect various types of intrusions in real-time by means of generating clusters incrementally.

Proposal of Memory Information Extension Model Using Adaptive Resonance Theory (ART를 이용한 기억 정보 확장 모델 제시)

  • 김주훈;김성주;김용택;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1283-1286
    • /
    • 2003
  • Human can update the memory with new information not forgetting acquired information in the memory. ART(Adaptive Resonance Theory) does not need to change all information. The methodology of ART is followed. The ART updates the memory with the new information that is unknown if it is similar with the memorized information. On the other hand, if it is unknown information the ART adds it to the memory not updating the memory with the new one. This paper shows that ART is able to classify sensory information of a certain object. When ART receives new information of the object as an input, it searches for the nearest thing among the acquired information in the memory. If it is revealed that new information of the object has similarity with the acquired object, the model is updated to reflect new information to the memory. When new object does not have similarity with the acquired object, the model register the object into new memory

  • PDF

Automatic partial shape recognition system using adaptive resonance theory (적응공명이론에 의한 자동 부분형상 인식시스템)

  • 박영태;양진성
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.79-87
    • /
    • 1996
  • A new method for recognizing and locating partially occluded or overlapped two-dimensional objects regardless of their size, translation, and rotation, is presented. Dominant points approximating occuluding contoures of objects are generated by finding local maxima of smoothed k-cosine function, and then used to guide the contour segment matching procedure. Primitives between the dominant points are produced by projecting the local contours onto the line between the dominant points. Robust classification of primitives. Which is crucial for reliable partial shape matching, is performed using adaptive resonance theory (ART2). The matched primitives having similar scale factors and rotation angles are detected in the hough space to identify the presence of the given model in the object scene. Finally the translation vector is estimated by minimizing the mean squred error of the matched contur segment pairs. This model-based matching algorithm may be used in diveerse factory automation applications since models can be added or changed simply by training ART2 adaptively without modifying the matching algorithm.

  • PDF

Memory Information Extension Model Using Adaptive Resonance Theory

  • Kim, Jong-Soo;Kim, Joo-Hoon;Kim, Seong-Joo;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.652-655
    • /
    • 2003
  • The human being receives a new information from outside and the information shows gradual oblivion with time. But it remains in memory and isn't forgotten for a long time if the information is read several times over. For example, we assume that we memorize a telephone number when we listen and never remind we may forget it soon, but we commit to memory long time by repeating. If the human being received new information with strong stimulus, it could remain in memory without recalling repeatedly. The moments of almost losing one's life in on accident or getting a stroke of luck are rarely forgiven. The human being can keep memory for a long time in spite of the limit of memory for the mechanism mentioned above. In this paper, we will make a model explaining that mechanism using a neural network Adaptive Resonance Theory.

  • PDF

Ellipsoid Fuzzy-ART for Pattern Recognition Improvement (패턴인식을 위한 타원형 Fuzzy-ART)

  • 강성호;정성부;임중규;이현관;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.305-308
    • /
    • 2003
  • This paper proposed Ellipsoid Fuzzy-ART (Fuzzy-Adaptive Resonance Theory) for recognition performance improvement to use Mahalanobis distance. The suggested method uses Mahalanobis distance to decide pattern boundary region at vector space. In order to confirm the validity of proposed method, comparison of the performance has made between existing method and the proposed method through simulation.

  • PDF

Pattern Recognition of Long-term Ecological Data in Community Changes by Using Artificial Neural Networks: Benthic Macroinvertebrates and Chironomids in a Polluted Stream

  • Chon, Tae-Soo;Kwak, Inn-Sil;Park, Young-Seuk
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.89-100
    • /
    • 2000
  • On community data. sampled in regular intervals on a long-term basis. artificial neural networks were implemented to extract information on characterizing patterns of community changes. The Adaptive Resonance Theory and Kohonen Network were both utilized in learning benthic macroinvertebrate communities in the Soktae Stream of the Suyong River collected monthly for three years. Initially, by regarding each monthly collection as a separate sample unit, communities were grouped into similar patterns after training with the networks. Subsequently, changes in communities in a sequence of samplings (e.g., two-month, four-month, etc.) were given as input to the networks. After training, it was possible to recognize new data set in line with the sampling procedure. Through the comparative study on benthic macroinvertebrates with these learning processes, patterns of community changes in chironomids diverged while those of the total benthic macro-invertebrates tended to be more stable.

  • PDF