• Title/Summary/Keyword: Adaptive Radar

Search Result 137, Processing Time 0.024 seconds

A Study on Look Error Estimation and Adaptive Array Angle Estimation (지향 오차 추정과 적응 배열 입사방향 추정 방법에 대한 연구)

  • Lee, Kwan-Hyeong;Song, Woo-Young;Lee, Myung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.155-162
    • /
    • 2011
  • It is using to incident angle estimation technique in order to target estimation in radar. This paper was estimated incident angle estimation for target using adaptive array incident angle and single look error incident angle estimation technique. We estimated signal incident angle of target to removal main lobe and side lobe to adaptive array incident angle technique. It is difficult to correctly target estimation because single look technique increase direction error of signal incident angle. In order to receive a desired target signal must be not almost look error between signal incident angle and look angle. we had decreased to occur a look error using delay time and single look condition to calculation a covariance when incident angle estimate. Through simulation, we show that the proposed incident angle estimation technique improves the performance of target estimation compared to previous method.

Design and Implementation of CW Radar-based Human Activity Recognition System (CW 레이다 기반 사람 행동 인식 시스템 설계 및 구현)

  • Nam, Jeonghee;Kang, Chaeyoung;Kook, Jeongyeon;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.426-432
    • /
    • 2021
  • Continuous wave (CW) Doppler radar has the advantage of being able to solve the privacy problem unlike camera and obtains signals in a non-contact manner. Therefore, this paper proposes a human activity recognition (HAR) system using CW Doppler radar, and presents the hardware design and implementation results for acceleration. CW Doppler radar measures signals for continuous operation of human. In order to obtain a single motion spectrogram from continuous signals, an algorithm for counting the number of movements is proposed. In addition, in order to minimize the computational complexity and memory usage, binarized neural network (BNN) was used to classify human motions, and the accuracy of 94% was shown. To accelerate the complex operations of BNN, the FPGA-based BNN accelerator was designed and implemented. The proposed HAR system was implemented using 7,673 logics, 12,105 registers, 10,211 combinational ALUTs, and 18.7 Kb of block memory. As a result of performance evaluation, the operation speed was improved by 99.97% compared to the software implementation.

Performance Evaluation of Nonhomogeneity Detector According to Various Normalization Methods in Nonhomogeneous Clutter Environment (불균일한 클러터 환경 안에서 Nonhomogeneity Detector의 다양한 정규화 방법에 따른 성능 평가)

  • Ryu, Jang-Hee;Jeong, Ji-Chai
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.72-79
    • /
    • 2009
  • This paper describes the performance evaluation of NHD(nonhomogeneity detector) for STAP(space-time adaptive processing) airborne radar according to various normalization methods in the nonhomogeneous clutter environment. In practice, the clutter can be characterized as random variation signals, because it sometimes includes signals with very large magnitude like impulsive signal due to the system environment. The received interference signals are composed of homogeneous and nonhomogeneous data. In this situation, NHB is needed to maintain the STAP performance. The normalization using the NHD result is an effective method for removing the nonhomogeneous data. The optimum normalization can be performed by a representative value considered with a characteristic of the given data, so we propose the K-means clustering algorithm. The characteristic of random variation data due to nonhomogeneous clutters can be considered by the number of clusters, and then the representative value for selecting the homogeneous data is determined in the clustering result. In order to reflect a characteristic of the nonstationary interference data, we also investigate the algorithm for a calculation of the proper number of clusters. Through our simulations, we verified that the K-means clustering algorithm has very superior normalization and target detection performances compared with the previous introduced normalization methods.

  • PDF

A Study on the Beam Steering Error Modification method to Adaptive Array System (적응배열 시스템에서 빔 지향 오차 수정기법에 대한 연구)

  • Lee, Myung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.39-44
    • /
    • 2008
  • Wireless channel exists interference by multipath a component. Adaptation array antenna that remove this interference a component forms null point about interference signal and maximizes gains about target signal. If target signal and correlative coherent interference signal are received, there is problem that is removed from arrangement output to target signal. And, adaptation array antenna is shortcoming that is sensitive in directivity error. Therefore, in this paper, introduce each existing algorithm to solve directivity error about coherent interference, and proposed beam forming technique that minimize degree of freedom loss and damage because analyzes the problem and reduces coherent interference and directivity error.

  • PDF

ISAR Motion Compensation using Evolutionary Programming-Based Time-Frequency Analysis (진화 프로그래밍 기반의 시간-주파수 영역 해석법을 이용한 ISAR 영상 이동보상기법)

  • 최인식;김효태
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1156-1160
    • /
    • 2003
  • Many time-frequency analysis techniques have been used for motion compensated ISAR(Inverse Synthetic Aperture Radar) imaging. In this work, a novel time-frequency(T-F) analysis called evolutionary adaptive wavelet transform (EAWT) and evolutionary adaptive joint time-frequency(EAJTF) procedure are used for the motion compensated ISAR image. To show the validity of our algorism, we use simulated MIG-25 and Boeing 727(B-727) ISAR data. From the constructed ISAR image using EAWT and EAJTF, we show that our algorithm can obtain a clear motion compensated ISAR image such as other time-frequency analysis techniques.

RCS Analysis of Complex Structures Using Object Precision Method (Object Precision 방법을 이용한 복합 구조물의 RCS 해석)

  • Kim, Kook-Hyun;Kim, Jin-Hyeong;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.159-164
    • /
    • 2005
  • Monostatic RCS analysis of complex structures has been done with a combined method of physical and geometric optics, commonly applied to high frequency electromagnetic backscattering problems. In the analysis, the complex structure is modeled as a number of flat surfaces and the RCS of whole structure is calculated by summing RCS of each surface, which can be obtained from an analytical solution of flat surface phase integral derived from physical optics. The reflected and hidden surfaces are searched by an object precision method based on adaptive triangular beam method, which can take account for effects of multiple reflections and polarizations of electromagnetic wave. The validity of the presented RCS analysis method has been verified by comparing with exact solutions and measured data for various structures.

Adaptive Fast Calibration Method for Active Phased Array Antennas using PPO Algorithm (PPO 알고리즘을 이용한 능동위상배열안테나 적응형 고속 보정 방법)

  • Sunge Lee;Kisik Byun;Hong-Jib, Yoon
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.636-643
    • /
    • 2023
  • In this paper, a high-speed calibration method for phased array antennas in the far-field is presented A max calibration, which is a simplification of the rotating-element electric-field vector (REV) method that calibrates each antenna element only through received power, and a method of grouping calibrations by sub-array unit rather than each antenna element were proposed. Using the Proximal Policy Optimization (PPO) algorithm, we found a partitioning optimized for the distribution of phased array antennas and calibrated it on a subarray basis. An adaptive max calibration method that allows faster calibration than the conventional method was proposed and verified through simulation. Not only is the gain of the phased array antenna higher while calibration is being made to the target, but the beam pattern is closer to the ideal beam pattern than the conventional method.

New Sidelobe Canceller for 3-D Phased Array Radar in Strong Interference (강한 간섭 신호를 제거하기 위한 3차원 위상배열 레이다용 새로운 부엽제거기)

  • Cho, Myeong-Je;Han, Dogn-Seog;Jung, Jin-Won;Kim, Soo-Joong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.10
    • /
    • pp.144-155
    • /
    • 1998
  • The array weights that will maximize the SNR for any type of noise environment are determined by the function of the antenna design configuration and the directions of receiving target and interference signals. The conventional SLCs(sidelobe cancellers) using the SNR maximization perform worst from the saturation of the receiving system of main channel when the main antenna has pattern with high gain at the arrival angle of strong interference. In this paper, the new SLC is accomplished by using two independent antenna architecture. Main antenna is implemented with adaptive nulling, which is used for rejecting high-power interference primarily. Auxiliary antenna is realized with adaptive array for receiving interference signal to be suppressed completely, which has a characteristics of sufficient gain for every direction. The new SLC is implemented with above both antennas. We show that the new SLC, which consists of the adaptive nulling main antenna and the adaptive array auxiliary antenna, is useful in reducing the effect of strong interference like jammer, because the adaptive nulling at main antenna prevents its receiver and signal processor for saturation by strong interference. The proposed SLC has improved SNR over the conventional SLCs. The improved SNR at sidelobe region is typically more than 7 dB for a given test signal. Moreover, it improves the SNR of about 20 dB under strong interference at mainlobe.

  • PDF

Iterative Pre-Whitening Projection Statistics for Improving Multi-Target Detection Performance in Non-Homogeneous Clutter (불균일 클러터 환경에서 다중 표적탐지 성능 향상을 위한 반복 백색화 투영 통계 기법)

  • Park, Hyuck;Kang, Jin-Whan;Kim, Sang-Hyo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.120-128
    • /
    • 2012
  • In this paper, we propose a modified iterative pre-whitening projection statistics (MIPPS) scheme for improving multi-target detection performance in non-homogeneous clutter environments. As a non-homogeneity detection (NHD) technique of space-time adaptive processing algorithm for airborne radar, the MIPPS scheme improves the average detection probability of weak target when multiple targets with different reflection signal intensities are located in close range. Numerical results show that the conventional NHD schemes suffers from the masking effect by strong targets and clutters and the proposed MIPPS scheme outperforms the conventional schemes with respect to the average detection probability of the weak target at low signal-to-clutter ratio.

An Adaptive Microphone Array with Linear Phase Response (선형 위상 특성을 갖는 적응 마이크로폰 어레이)

  • Kang, Hong-Gu;Youn, Dae-Hui;Cha, Il-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.53-60
    • /
    • 1992
  • Many adaptive beamforming methods have been studied for interference cancellation and speech signal enhancement in telephone conference and auditorium. Main aspect of adaptive beamforming methods for speech signal processing is different from radar, sonar and seismic signal processing because desire output signal should be apt to the human ear. Considering that phase of speech is quite insensible to the human ear, Sondhi proposed a nonlinear constrained optimization technique whose constraint was on the magnitude transfer function from the source to the output. In real environment the phase response of the speech signal affects the human auditorium system. So it is desirable to design linear phase system. In this paper, linear phase beamformer is proposed and sample processing algorithm is also proposed for real time consideration Simulation results show that the proposed algorithm yields more consistent beam patterns and deep nulls to the noise direction than Sondhi's.

  • PDF