• 제목/요약/키워드: Adaptive Power Control Mechanism

검색결과 37건 처리시간 0.026초

Lyapunov Redesign 기법을 이용한 태양광 발전 시스템의 안정한 적응형 컨버터 제어기법 (The Stable Adaptive Converter Control Method of Photovoltaic Power Systems using Lyapunov Redesign Approach)

  • 조현철;박지호;김동완
    • 전기학회논문지P
    • /
    • 제61권4호
    • /
    • pp.161-167
    • /
    • 2012
  • Energy conversion systems such as power inverters and converters are basically significant in establishing photovoltaic power systems to enhance power effectiveness. This paper proposes a new converter control method by using the Lyapunov redesign approach. We construct the proposed control mechanism linearly composed of nominal control and auxiliary control laws. The former is generally designed through a well-known power electronic technology and the latter is implemented to compensate real-time control error due to uncertain natures of converter systems in practice. For realizing adaptive control capability in the proposed control mechanism, a control parameter vector is estimated by utilizing a steepest descent based optimization method. We carry out numerical simulation with Matlab(c) software to demonstrate reliability of the proposed converter control system and conduct a comparative study to prove its superiority by comparing with a generic converter control methodology.

Adaptive second-order nonsingular terminal sliding mode power-level control for nuclear power plants

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1644-1651
    • /
    • 2022
  • This paper focuses on the power-level control of nuclear power plants (NPPs) in the presence of lumped disturbances. An adaptive second-order nonsingular terminal sliding mode control (ASONTSMC) scheme is proposed by resorting to the second-order nonsingular terminal sliding mode. The pre-existing mathematical model of the nuclear reactor system is firstly described based on point-reactor kinetics equations with six delayed neutron groups. Then, a second-order sliding mode control approach is proposed by integrating a proportional-derivative sliding mode (PDSM) manifold with a nonsingular terminal sliding mode (NTSM) manifold. An adaptive mechanism is designed to estimate the unknown upper bound of a lumped uncertain term that is composed of lumped disturbances and system states real-timely. The estimated values are then added to the controller, resulting in the control system capable of compensating the adverse effects of the lumped disturbances efficiently. Since the sign function is contained in the first time derivative of the real control law, the continuous input signal is obtained after integration so that the chattering effects of the conventional sliding mode control are suppressed. The robust stability of the overall control system is demonstrated through Lyapunov stability theory. Finally, the proposed control scheme is validated through simulations and comparisons with a proportional-integral-derivative (PID) controller, a super twisting sliding mode controller (STSMC), and a disturbance observer-based adaptive sliding mode controller (DO-ASMC).

유도전동기 드라이브의 고성능 제어를 위한 MRAC 퍼지제어 (MRAC Fuzzy Control for High Performance of Induction Motor Drive)

  • 정동화;이정철
    • 전력전자학회논문지
    • /
    • 제7권3호
    • /
    • pp.215-223
    • /
    • 2002
  • 본 논문은 벡터로 제어되는 유도전동기 드라이브를 위하여 퍼지논리에 기초한 속도 및 자속제어기의 적응제어를 제시한다. 적응 메카니즘에서 제시된 모델기준 적응방법은 전동기의 속도와 기준모델의 출력 사이에서 측정한 오차와 오차의 변화에 의하여 퍼지논리를 수행한다. MIRAC(Model Reference Adaptive Control) 퍼지제어기는 다양한 동작조건을 위하여 시뮬레이션에 의해 평가한다. 제시한 MIRAC 퍼지제어기의 타당성은 유도전동기 드라이브 시스템에 적용하여 성능 결과로 입증한다.

소규모 이더넷 스위치에서 개선된 적응적 전력 제어 메커니즘 (An Enhanced Adaptive Power Control Mechanism for Small Ethernet Switch)

  • 김영현;이성근;고진광
    • 한국전자통신학회논문지
    • /
    • 제8권3호
    • /
    • pp.389-395
    • /
    • 2013
  • 이더넷은 전 세계적으로 가장 널리 배치되어 사용되는 가입자망 네트워킹 기술이다. 이더넷의 에너지 효율성을 향상시키기 위해 IEEE 802.3az WG에서 LPI 기반의 EEE 규격을 확정하였다. 본 논문은 소규모 이더넷 스위치에서 EEE 를 기반으로 에너지 효율을 향상시킬 수 있는 개선된 적응적 전력 제어 메커니즘을 제안한다. 본 메커니즘의 특징은 일정기간 유입되는 트래픽 양을 측정하여 다음 주기의 트래픽 특성을 예측하고, 해당 트래픽 부하에 최적의 threshold 값을 조정한다. 성능분석 결과는 본 논문에서 제안한 메커니즘이 기존 방법에 비해서 평균 패킷 지연은 약간 증가시키지만 에너지 소비율을 상당히 감소시키므로 전반적으로 성능을 향상시키는 것으로 나타났다.

BLDC 서보 모터를 위한 적응 퍼지 슬라이딩 모드 제어기의 설계 (Adaptive fuzzy sliding-mode control for BLDC Servo Mortor)

  • 박수식
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.624-627
    • /
    • 2000
  • An adaptive fuzzy sliding-mode control system which combines the merits of sliding-mode control the fuzzy inference mechanism and the adaptive algorithm is proposed. A fuzzy sliding-mode controller is investigated in which a simple fuzzy inference mechamism is used to estimate the upper bound of uncertainties., The fuzzy inference mechanism with centre adaptation of membership functions is investigated to estimate the optimal bound of uncertainties.

  • PDF

굴삭기 작업장치부의 기하학적 동역학 모델링 및 궤적 제어에 관한 연구 (Geometric Modeling and Trajectory Control Design for an Excavator Mechanism)

  • 김성호;유승진;이교일
    • 유공압시스템학회논문집
    • /
    • 제4권2호
    • /
    • pp.1-6
    • /
    • 2007
  • During the last few decades, excavation automation has been investigated to protect the operator from the hazardous working environment and to relieve the cost of the skilled operator. Therefore, a number of modelling and controller design methods of the hydraulic excavator are proposed in many literatures to realize the excavation automation. In this article, a geometric approach far the multi-body system modeling is adopted to develop the excavator mechanism model that contains 4 kinematic loops and 12 links. Considering a simple soil mechanism model with a number of uncertain soil parameters, an adaptive trajectory tracking control strategy based on the developed excavator model is proposed. The improved performance of the designed controller over the simple PID controller is validated via the simulation study.

  • PDF

Digital Control of Secondary Active Clamp Phase-Shifted Full-Bridge Converters

  • Che, Yanbo;Ma, Yage;Ge, Shaoyun;Zhu, Dong
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.421-431
    • /
    • 2014
  • A DSP-based self-adaptive proportional-integral (PI) controller to control a DC-DC converter is proposed in this paper. The full-bridge topology is adopted here to obtain higher power output capability and higher conversion efficiency. The converter adopts the zero-voltage-switching (ZVS) technique to reduce the conduction losses. A parallel secondary active clamp circuit is added to deal with the voltage overshoot and ringing effect on the transformer's secondary side. A self-adaptive PI controller is proposed to replace the traditional PI controller. Moreover, the designed converter adopts the constant-current and constant-voltage (CC-CV) output control strategy. The secondary active clamp mechanism is discussed in detail. The effectiveness of the proposed converter was experimentally verified by an IGBT-based 10kW prototype.

생체면역알고리즘 적응 제어기를 이용한 AGV 주행제어에 관한 연구 (A Study on Driving Control of an Autonomous Guided Vehicle Using Humoral Immune Algorithm(HIA) Adaptive Controller)

  • 이권순;서진호;이영진
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.194-201
    • /
    • 2005
  • In this paper, we propose an adaptive mechanism based on humoral immune algorithm and neural network identifier technique. It is also applied for an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To slove this problem, we use the neural network identifier technique for modeling the plant humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. Finally, the experimental results for control of steering and speed of AGV system illustrate the validity of the proposed control scheme. Also, these results for the proposed method show that it has better performance than other conventional controller design method such as PID controller.

  • PDF

A New Approach to Adaptive Damping Control for Statistic VAR Compensators Based on Fuzzy Logic

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.825-829
    • /
    • 2005
  • This paper presents an approach for designing a fuzzy logic-based adaptive SVC damping In controller for damping low frequency power oscillations. Power systems are often subject to low Frequency electro-mechanical oscillations resulting from electrical disturbances. Generally, power system stabilizers are designed to provide damping against this kind of oscillations. Another means to achieve damping is to design supplementary damping controllers that are equipped with SVC. Various approaches are available for designing such controllers, many of which are based on the concepts of damping torque and others which treat the damping controller design as a generic control problem and apply various control theories on it. In our proposed approach, linear optimal controllers are designed and then a fuzzy logic tuning mechanism is constructed to generate a single control signal. The controller uses the system operating condition and a fuzzy logic signal tuner to blend the control signals generated by two linear controllers, which are designed using an optimal control method. First, we design damping controllers for the two extreme conditions; the control action for intermediate conditions is determined by the fuzzy logic tuner. The more the operating condition belongs to one of the two fuzzy sets, the stronger the contribution of the control signal from that set in the output signal. Simulation studies done on a one-machine infinite-bus and a four-machine two-area test system, show that the proposed fuzzy adaptive damping SVC controller effectively enhances the damping of low frequency oscillations.

  • PDF

유도전동기의 고성능 속도제어를 위한 적응퍼지제어 (Adaptive Fuzzy Control for High Performance Speed Control of Induction Motor Drive)

  • 이홍균;이정철;정택기;정동화
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.222-224
    • /
    • 2002
  • This paper investigates the adaptive control of a fuzzy logic based speed and flux controller for a vector controlled induction motor drive. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the model reference adaptive control(mAC) fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed MRAC fuzzy controller is confirmed by performance results for induction motor drive system.

  • PDF