• Title/Summary/Keyword: Adaptive OFDM

Search Result 177, Processing Time 0.022 seconds

Data Transmission Rate Improvement Scheme in Power Line Communication System for Smart Grid (스마트 그리드를 위한 전력선 통신 시스템에서의 데이터 전송률 향상 기법)

  • Kim, Yo-Cheol;Bae, Jung-Nam;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1183-1191
    • /
    • 2010
  • In this paper, I propose an adaptive OFDM CP length algorithm for in PLC systems for smart grid. The proposed scheme calculates the channel delay information at the CP controller of the receiver by taking correlation between a received data frame and the following delayed one. The CP controller, immediately, feeds back the channel delay information to the transmitter. Then, the transmitter adapts CP length for next data frame. As an impulsive noise model, Middleton Class A interference model was employed. The performance is evaluated in terms of packet data rate, cumulative packet data rate, and bit error rate (BER). The simulation results showed data gain (which is the amount of the reduced bits) gets larger as the number of packets increase, but the amount of data gain reduced as the number of branches ($N_{br}$) increase. In respects of BER for the cases $N_{br}$ is 3, 4, and 5, performance of the adaptive CP length algorithm and the fixed CP scheme are similar. Therefore, it is confirmed the proposed scheme achieved data rate increment without BER performance reduction compared to the conventional fixed CP length scheme.

Adaptive Channel Attenuation Compensation Scheme for Minimum PAR in Satellite OFDMA Downlink (위성 OFDMA Downlink에서 PAR을 최소화 하기 위한 사용자 부채널 할당 및 채널 보상 기법)

  • Kim, Han-Nah;Choi, Kwon-Hue;Ahn, Do-Seob;Kang, Kun-Seok;Kim, Hee-Wook
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.1
    • /
    • pp.28-35
    • /
    • 2009
  • We investigate the adaptive channel attenuation compensation of satellite OFDMA downlink users for minimum PAR (Peak to Average power Ratio), which is one of the main challenging issues in satellite OFDMA application. First, we analyze and compare PAR performances of two main different channel attenuation compensation schemes for OFDMA, i.e., PC-OFDMA (power control OFDMA) and AMC-OFDMA (Adaptive Modulation and Coding). While AMC-OFDMA maintains the constant transmission powers through entire user data subcarriers, PC-OFDMA has non-uniform subcarrier transmission powers because subcarrier powers are separately controlled to compensate each user's sub-channel attenuation. We newly found the fact that non-uniform subcarrier power in PC-OFDMA achieves rather reduced PAR compared to AMC-OFDMA and the amount of reduction becomes larger as the power differences among subcarriers increase. Also, there is an additional PAR reduction in PC-OFDMA by optimizing subcarrier grouping scheme for user's sub-channelization.

  • PDF

Adaptive Delay Threshold-based Priority Queueing Scheme for Packet Scheduling in Mobile Broadband Wireless Access System (광대역 이동 액세스 시스템에서의 실시간 및 비실시간 통합 서비스 지원을 위한 적응적 임계값 기반 패킷 스케줄링 기법)

  • Ku, Jin-Mo;Kim, Sung-Kyung;Kim, Tae-Wan;Kim, Jae-Hoon;Kang, Chung-G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3A
    • /
    • pp.261-270
    • /
    • 2007
  • The Delay Threshold-based Priority Queueing (DTPQ) scheme has been shown useful for scheduling both real-time (RT) and non-real-time (NRT) service traffic in mobile broadband wireless access (MBWA) systems. The overall system capacity can be maximized subject to their QoS requirement by the DTPQ scheme, which takes the urgency of the RT service into account only when their head-of-line (HOL) packet delays exceed a given delay threshold. In practice, the optimum delay threshold must be configured under the varying service scenarios and a corresponding traffic load, e.g., the number of RT and NRTusers in the system. In this paper, we propose an adaptive version of DTPQ scheme, which updates the delay threshold by taking the urgency and channel conditions of RT service users into account. By evaluating the proposed approach in an orthogonal frequency division multiple access/time division duplex (OFDM/TDD)-based broadband mobile access system, it has been found that our adaptive scheme significantly improves the system capacity as compared to the existing DTPQ scheme with a fixed delay threshold.

An Adaptive Hot-spot Operating Scheme in Vertically Overlaid OFDMA Wireless Systems (수직적으로 겹쳐진 OFDMA 무선 시스템에서의 적응적 Hot-spot 운용 기법)

  • Choi Hye-Sun;Chung Hee-Jeong;Kim Nak-Myeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.620-627
    • /
    • 2005
  • We develop an adaptive hot-spot operating scheme(AHOS) to mitigate the negative effects from the nonuniform distribution of user location and the variation in the mixture of QoS requirements in OFDMA downlink systems. The base station in a macrocell can control the operation of picocells within the cell, and turns on or off according to the changes in the estimated user outage probability and the AHOS gain parameter. With the computer simulation, the AHOS has been proved to maximize the system throughput while maintaining the QoS outage probability very low under various system scenarios.

An Adaptive Hot-Spot Operating Scheme for OFDMA Downlink Systems in Vertically Overlaid Cellular Architecture

  • Kim, Nak-Myeong;Choi, Hye-Sun;Chung, Hee-Jeong
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.282-290
    • /
    • 2006
  • In vertically overlaid cellular systems, a temporary traffic concentration can occur in a hot-spot area, and this adversely affects overall system capacity. In this paper, we develop an adaptive hot-spot operating scheme (AHOS) to mitigate the negative effects from the nonuniform distribution of user location and the variation in the mixture of QoS requirements in orthogonal frequency division multiple access downlink systems. Here, the base station in a macrocell can control the operation of picocells within the cell, and turns them on or off according to the system overload estimation function. In order to determine whether the set of picocells is turned on or off, we define an AHOS gain index that describes the number of subcarriers saved to the macrocell by turning a specific picocell on. For initiating the picocell OFF procedure, we utilize the changes in traffic concentration and co-channel interference to the neighboring cells. According to computer simulation, the AHOS has been proved to have maximize system throughput while maintaining a very low QoS outage probability under various system scenarios in both a single-cell and multi-cell environments.

  • PDF

Joint Compensation of Transmitter and Receiver IQ Imbalance in OFDM Systems Based on Selective Coefficient Updating

  • Rasi, Jafar;Tazehkand, Behzad Mozaffari;Niya, Javad Musevi
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.43-53
    • /
    • 2015
  • In this paper, a selective coefficient updating (SCU) approach at each branch of the per-tone equalization (PTEQ) structure has been applied for insufficient cyclic prefix (CP) length. Because of the high number of adaptive filters and their complex adaption process in the PTEQ structure, SCU has been proposed. Using this method leads to a reduction in the computational complexity, while the performance remains almost unchanged. Moreover, the use of set-membership filtering with variable step size is proposed for a sufficient CP case to increase convergence speed and decrease the average number of calculations. Simulation results show that despite the aforementioned algorithms having similar performance in comparison with conventional algorithms, they are able to reduce the number of calculations necessary. In addition, compensation of both the channel effect and the transmitter/receiver in-phase/quadrature-phase imbalances are achievable by these algorithms.

Comparison and Analysis of the MC DS-CDMA/MPSK and DS-CDMA/MPSK Systems in Nakagami Fading (나카가미 감쇄에서 MC DS-CDMA/MPSK와 DS-CDMA/MPSK 시스템 비교 분석)

  • 이정도;강희조
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.6
    • /
    • pp.951-958
    • /
    • 1999
  • Multicarrier modulation or orthogonal frequency division multiplexing(OFDM) is a promising technique for mobile communications systems, since it has a strong immunity to multipath fading without employing complicated adaptive equalization. In this paper, performance of MC DS-CDMA/MPSK(multi-carrier direct sequence-code division multiple access/mary phase shift keying) and DS-CDMA/MPSK(direct sequence-code division multiple access/mary phase shift keying) with coherent detection for a CDMA system over Nakagami fading channel analysis. For a given bandwidth, it is shown that MC DS-CDMA/MPSK eventually outperforms DS-CDMA MPSK with random sequences.

  • PDF

Low-Power-Adaptive MC-CDMA Receiver Architecture

  • Hasan, Mohd.;Arslan, Tughrul;Thompson, John S.
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.79-88
    • /
    • 2007
  • This paper proposes a novel concept of adjusting the hardware size in a multi-carrier code division multiple access (MC-CDMA) receiver in real time as per the channel parameters such as delay spread, signal-to-noise ratio, transmission rate, and Doppler frequency. The fast Fourier transform (FFT) or inverse FFT (IFFT) size in orthogonal frequency division multiplexing (OFDM)/MC-CDMA transceivers varies from 1024 points to 16 points. Two low-power reconfigurable radix-4 256-point FFT processor architectures are proposed that can also be dynamically configured as 64-point and 16-point as per the channel parameters to prove the concept. By tailoring the clock of the higher FFT stages for longer FFTs and switching to shorter FFTs from longer FFTs, significant power saving is achieved. In addition, two 256 sub-carrier MC-CDMA receiver architectures are proposed which can also be configured for 64 sub-carriers in real time to prove the feasibility of the concept over the whole receiver.

  • PDF

AN ADAPTIVE BEAMFORMING TECHNIQUE FOR WiBro SMART ANTENNA SYSTEM IN MULTIPATH FADING CHANNEL (다중경로 페이딩 환경에서 와이브로 스마트 안테나 시스템의 적응 빔포밍 기술 연구)

  • Jo, Yong-Jin;Oh, Tae-Youl;Chung, Jae-Ho;Choi, Seung-Won
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.384-388
    • /
    • 2008
  • Multiple antenna technology, such as multiple input multiple output (MIMO), beamforming is one of the most promising technology for broadband wireless communication. In OFDM environment, we found that as the number of paths is increased, smart antenna system cannot fully exploit beamforming gain. In this paper, we propose a beamforming scheme and analyze the performance of the proposed beamforming scheme in WiBro smart antenna system. WiBro is an OFDMA-based multiple access service for wireless broadband multimedia environment. The proposed beamforming technique for WiBro smart antenna system can effectively improve the performance of the systems in multipath fading environment.

  • PDF

Performance Improvement of MIMO-OFDMA system with beamformer

  • Kim, Chan Kyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.60-68
    • /
    • 2019
  • In this paper, we propose the adaptive beamforming algorithm for the MIMO (Multi-Input Multi-Out)-OFDMA(Orthogonal Frequency Division Multiplexing Access)system to improve the performance. The performance of MIMO-OFDMA systems is greatly decreased in the wireless channel environment with multiusers, because the received signals are much distorted by a cochannel interference (CCI) during the space-time decoding. The proposed approach can track the DOA of each signal from the multiple antennas of the desired user without being greatly dependent on the impinging angle. And beams are directed toward the multiple transmitters of the desired user while null beams are directed toward interference directions. Therefore, we can can effectively cancel CCI and mitigate the impairment of delay spread while preserving the STC(space time code) diversity. BER performance improvement is investigated through computer simulation by applying the proposed approach to MIMO-OFDMA system in a multipath fading channel with CCI.